
1

A Case Study: An Android Security

Shagufta Akhtar

Department of Computer Science, Institute of Science and Technology, Chapra (Saran), Bihar, India.

A r t i c l e I n f o A B S T R A C T
Article History:

Submitted/Received 11 July 2024

Revised in revised format 5 August

2024

Accepted 10 September 2024

Available 15 October 2024

Publication Date 15 October 2024

Keyword:

Program Comprehension, Security

Assessment, Software Security,

Android.

Cite this article: Akhtar, S. (2024). A

case study: An Android security.

Journal of Artificial Intelligence and

Computational Technology, 1(1)

COPYRIGHT © 2024 First author, et

al. This is an open access article

distributed under the terms of the

Creative Commons Attribution

License (CC BY).

 Software security has made great progress; code analysis tools perform

extensive checks for code defects, it is useful to have a basic

understanding of the different warnings and emphasize the bug.

However, this is beyond the state of the art for many types of application

security flaws. Thus, such tools frequently serve for an analyst to help

them zero in on security relevant portions of code so they can find flaws

more efficiently, rather than a tool that simply finds flaws automatically.

In cooperation with a security expert, we carried out a case study with

the mobile phone platform Android, and employed the reverse

engineering tool-suite Bauhaus for this security assessment. During the

investigation we found some inconsistencies in the implementation of

the Android security concepts. Based on the lessons learned from the

case study, we propose several research topics in the area of reverse

engineering that would support a security analyst during security

assessments.

Journal of Artificial Intelligence and Computational

Technology

Journal homepage: https://ojs.omgfzc.com/index.php/JECT

Journal of Artificial Intelligence and Computational Technology 1(1),2024,1-7

Author, Article Tittle… | 2

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

1. Introduction

Over the last years, static code analysis for security has made great progress. Commercial available

tools are employed by software vendors to detect implementation-level security bugs, such as buffer

overflows and injections vulnerabilities. Certainly, employing these tools is only the first step towards

secure software as it is restricted to common bug classes. More seriously are design-level flaws, since

literature states that the later a change must be applied to the design of an application, the more costs

will arise. Methods such as Microsoft’s threat modelling or the architectural risk analysis proposed by

McGraw should help to discover security problems already during the software-design phase. In

academia, more formal approaches to dealing with software security have been established, notably,

language-based security, model-driven security, and stepwise refinement. Although these approaches

are promising, they can just be applied when software is developed from scratch, which is rarely the

case. Owing to the fact that our work is focused more on the aspect of program understanding we

expect that program comprehension tools can help a security analyst detecting security flaws in code,

such as divergences between documentation and code. We imply that none of such flaws can be

detected in a fully automated way, and a security analyst must assess the situation by her own. What

we yet can expect is that the tool helps us to assess the risks of the software and, for example, pinpoints

security-critical areas of the code. Therefore, we chose a reverse-engineering tool-suite, called Bauhaus,

to analyse a well-known security aspect, in the open-source software system Android. We compared

the implementation of permission enforcement to the official Android documentation and discovered

a divergence.

 2. Related Works

Software security is an emerging research area with a strong practical impact. For example, we have

static analysis tools, that focus on common implementation-level bugs which are mostly related to

improper input validation. Nevertheless, these tools do not help one to understand the security aspects.

To our knowledge, only a few works deal with reverse engineering the security architecture out of code.

use the Software Architecture Visualization and Evaluation tool to detect a security back door— they

completely removed the security check —that they added for the case study. To detect the back door

they used static as well as dynamic information and compared the resulting information with the

results of the correct implementation. Mancoridis reports about common bug classes and names

techniques a software maintenance-engineer can use to improve the security of a software. Moreover,

he emphasizes several techniques that must be developed to tackle these problems properly. He

stresses that it is necessary to develop formal notations and tools to allow the specification of software-

security architectures. Mancoridis assumes that the developer has the security architecture of her

software in her mind, what is not necessarily the case. Sometimes literature on static code analysis treats

program comprehension as a side topic, for example, Chess and West briefly mention program

comprehension tools such as CAST and Fujaba in their book on static analysis for software security, but

do not give further details of how they might help one to address the problem of software security.

3. A Case Study

It is expected that Android will become one of the major mobile phone platforms in the future and is

used for other devices as well. As it gains a lot of market share and is open source, it is an interesting

target for security analyses. For this reason, we started a security assessment project. During the

analysis, we faced several challenges, mostly related to the lacking documentation of Android’s

security concepts and the complexity of the code. We started our review of the Android platform with

the assumption that not only the Linux kernel is security-critical, but also the Android middleware (the

Android framework classes). For example, the permission enforcement and the reference monitor,

https://doi.org/10.70274/medbiohealth.2024.1.1.18

3 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

which mediates the access to Android components, is implemented within the Java-based middleware,

although the kernel is accessed to retrieve data for security decisions. We aimed to explore and

understand the implementation of Android’s security mechanisms. Due to the fact that the structure of

the code and specifically the software architecture are unknown to us at the beginning, we used a

reverse engineering tool-suite called Bauhaus, to gain a better insight into the code. Other tools such as

Fujaba or CAST could have been used, too. The reason for employing Bauhaus was that the tool is

available at our institute and hence had experience with it. Generally, tools for program comprehension

contain functionality to represent information about the program, which can be gathered statically as

well as dynamically. With the help of these tools, one can obtain information on the components,

modules, classes, methods, and member variables, as well as relationships between these elements,

such as call relations or member accesses. We focus our analyzes on permission checking and

enforcement because access control is a basic security concept for IT systems and applications, going

back to Lampson’s access control matrix. Further literature on authorization can be found in standard

works on computer security.

4. Android Concepts

We first describe Android’s main concepts, before presenting the challenges related to analyzing the

platform with respect to security. Note that there does not exist a comprehensive document on

Android’s security concepts. The information is scattered throughout the Android developer’s website.

(a) Android Components: An Android application consists of different parts, called components,

having, according to its task, one of four basic component types. Activities are the presentation

layer of an application, allowing a user to interact with the application. Services represent

background processes without a user interface. Content providers are data stores that allow

developers to share databases across application boundaries. Finally, broadcast receivers are

components that receive and react to broadcast messages, for example, the Android OS itself

sends such a broadcast message if the battery is low. Each component of an application runs as

a separate task, making an Android device to a large distributed system, even if all processes

are running on the same device.

(b) Inter-Process Communication: The Android platform supports inter-process communication

(IPC) for communication between components. One foundation for this IPC is the Binder, an

Android specific kernel device that allows efficient but safe communication. A way to

communicate with components not known at the development time, are messages, which may

include arbitrary data, called intents. Intent is an abstract description of an operation to be

performed on the platform. For example, an intent can start a new activity or service, or

communicate with background services. An advantage of this technique is that a client

application is no longer linked to a specific program, but can access any possible service for the

specified need.

(c) Android Security Mechanisms: Android has two basic methods of security enforcement. Firstly,

applications run as Linux processes with their own user IDs and thus are separated from each other.

This way, vulnerability in one application does not affect other applications. In contrast to Java, the

virtual machine is not a security barrier because the Linux kernel takes over the task of separating

processes. Since Android provides IPC mechanisms, which need to be secured, a second

enforcement mechanism comes into play. Android implements a reference monitor to mediate

access to application components based on permission labels. If an application intends to access

another component, the end user must grant the appropriate permissions at installation time.

Furthermore, the security model has several refinements that increase the model’s complexity.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 4

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

4.1. Software Security Comprehension

In the preceding section, we showed that program- comprehension and reverse-engineering techniques

can be used in the area of software security. Now, we discuss research topics that need to be

investigated more deeply, to develop useful techniques and tools for a security evaluator. For our more

general discussion, we also consider experience gained in a research project called ASKS, which is

currently being carried out with enterprises that made available their business applications, which are

implemented using the Java platform, Enterprise Edition technology, for a security analysis. One

conclusion that we drew from our security review is that it is necessary to create more formal

architectural security views (see also Mancoridis’ statement. These views need to be language- and

platform-independent in order to be a common language to communicate with security experts who

are not necessarily experts for the programming language. With the help of these views, it is easier to

understand the security architecture of an application or even of a distributed system. In the following,

we discuss some further ideas of how these views can be created and what security aspects may be of

interest for such views.

5.1. Possible Architectural Views

There are many software aspects related to security. In companion with our security expert, we

identified some aspects that are suitable to be extracted from source and be useful for a security

specialist.

(a) Visualization of Trust Zones: It is helpful to group the identified software parts into trust zones

based on the criticality of the data/components accessed. With the help of such a view, one can

conduct a security-related impact analysis of changes and identified bugs, to balance out the

improvements against the threats.

(b) Visualization of Attack Surfaces: Beyond the decomposition of the code base into different

zones, it is helpful to add information about the boundaries of components (architectural

components or whole processes). Therefore, it is necessary to identify framework means that

allow communications between processes. By means of this knowledge, it is possible to identify

data sources and sinks. In combination with a dependence graph, it would be feasible to

estimate the attack impact.

(c) Access Control Policy: In this section, we described how to extract parts of the access control

policy of Android’s Bluetooth service. Since access control is crucial to many platforms and

applications, we can apply the task of extracting the access control policy on other platforms. For

example, we extracted the access control policy of a Java enterprise application and compared that

policy with the documentation employing the reflexion analysis.

5.2. Towards Automatic Extraction of Architectural Views

The aforementioned views must be created with the help of techniques already known in the reverse-

engineering community, but that need to be tailored towards the specific security needs to give

reasonable results.

(a) Abstraction: From our point of view, it is inevitable to introduce graphical abstractions

beyond the known visualizations, such as UML-diagrams and implementation-level

dependence graphs, to make security comprehension easier. The abstraction of constructs

in the software which are imposed by the framework, such as IPC mechanisms and Java

Beans, would help one to concentrate on the essential parts of the application.

Furthermore, it is common in current frameworks that parts of the implementation are

generated automatically. During an assessment a reviewer must analyse the generated

parts to “understand” the whole application and he cannot differentiate between

https://doi.org/10.70274/medbiohealth.2024.1.1.18

5 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

handwritten and generated source code. These technical entities hide the real intent

behind the code. Therefore, it is necessary to remove these details and replace them with

a presentation which is more meaningful to a security analyst.

(b) Component Detection: A slightly different kind of abstraction is the process of component

detection and aggregation, to allow a developer to build up a mental map of the system

more easily. This is useful if the architectural components are spread over several classes

and packages. The ideal case would be a supportive mechanism to restructure the

application’s representation semi-automatically such that it resembles the existing

architecture, specified by domain experts. Within the reverse-engineering and program-

comprehension community, there already exists experience with various clustering

techniques to extract components automatically from code. The components that are of

interest for detection are mostly domain- and implementation-specific, as well as the

aforementioned abstractions we must introduce. Therefore, it is a necessity to involve

framework experts to achieve reasonable results.

(c) Security Pattern Detection: Often, security features are integrated into the software

architecture by common and well- known aspects like enforcement points. Some of these

aspects can be merged to security patterns which have the goal to harden software against

attacks and misuse.

Existing design-pattern detection approaches, however, can only detect a few of the

common design patterns. Presently, none of them supports the detection of security

patterns, although ensuring security is a significant task.

Due to the fact that not everybody reengineering a system has appropriate security

knowledge automated approaches of detection are desirable. When a security pattern has

been detected, it can be highlighted in a software-architecture representation. Such

visualized security aspects can support hardening software before it will be released or

used by different user groups to post-check a software system.

7. Conclusion

We conducted a case study focusing on permission checking in the Android framework and showed that the

Bauhaus tool-suite can support a security expert during a security assessment. We were able to enhance our

understanding of the Android framework, in particular, a divergence between the documentation of the

Bluetooth API and the framework implementation has been found. Moreover, the comprehension of the IPC

mechanism for intents and the unexpected missing of permission checks were other results of the case study.

Based on our experience, we discussed new challenges and research problems for program comprehension in

security assessments. Further research must be carried out to apply the techniques of program comprehension

to the field of software security. Our impression is that neither the security-research community discusses this

topic adequately nor is industry making use of such techniques to better understand the security status of their

software. Using state-of-the-art tools for finding security bugs cannot reveal logical security problems such

as undesirable interactions between components. With the increasing complexity of software, software

companies need to understand the security risks of their code, and tools employing program comprehension

functionality will support them with this challenging task. We truly believe that “software-security

comprehension” will be a fruitful research topic for the future with also a broad practical impact.

8. References

M. VanHilst and E. B. Fernandez, “Reverse engineering to detect security patterns in code,”

in Proc. of 1st Intl. Workshop on Software Patterns and Quality. Information

Processing Society of Japan, December 2007.

K. Sohr and B. Berger, “Towards architecture-centric security analysis of software,” in

Engineering Secure Software and Systems. Springer, 2010.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 6

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead, Software Security

Engineering: A Guide for Project Managers, 1st ed. Addison-Wesley Professional,

2008.

M. Clavel, V. Silva, C. Braga, and M. Egea, “Model-driven security in practice: An industrial

experience,” in Proc. of the 4th European Conf. on Model Driven Architecture:

Foundations and Applications. Berlin, Heidelberg: Springer, 2008.

B. Chess, “Improving computer security using extended static checking,” in IEEE Symposium

on Security and Privacy. IEEE Computer Society, 2002.

G. Wassermann and Z. Su, “Sound and precise analysis of web applications for injection

vulnerabilities,” in Proc. of the 2007 ACM SIGPLAN Conf. on Programming Language

Design and Implementation ser. PLDI ’07. New York, NY, USA: ACM, 2007.

C. Nagy and S. Mancoridis, “Static security analysis based on input-related software faults,”

in Proc. of European Conf. on Software Maintenance and Reengineering. IEEE

Computer Society, 2009.

K. Karppinen, M. Lindvall, and L. Yonkwa, “Detecting security vulnerabilities with software

architecture analysis tools,” in IEEE Intl. Conf. on Software Testing Verification and

Validation Workshop, vol. 1. Los Alamitos, CA, USA: IEEE Computer Society, 2008.

H. Mantel, “Preserving information flow properties under refinement,” in IEEE Symposium

on Security and Privacy, 2001.

Google Inc., “Android - Security.” [Online].

Available:http://developer.android.com/guide/topics/security/security.html.

W. Enck, M. Ongtang, and P. McDaniel, “Understanding Android security,” IEEE Security

Privacy, vol. 7, 2009.

Siddiqui, A. T., Zamani, A. S., & Ahmed, J. (2012). Android security model that provide a base

operating system. J. Telecommun, 13(1), 36-43.

Al Duhayyim, Mesfer, Areej A. Malibari, Marwa Obayya, Mohamed K. Nour, Ahmed S.

Salama, Mohamed I. Eldesouki, Abu Sarwar Zamani, and Mohammed Rizwanullah.

"Metaheuristic with Deep Learning Enabled Biomedical Bone Age Assessment and

Classification Model." CMC-COMPUTERS MATERIALS & CONTINUA 73, no. 3

(2022): 5473-5489.

Zamani, A. S., Hashim, A. H. A., Shatat, A. S. A., Akhtar, M. M., Rizwanullah, M., &

Mohamed, S. S. I. (2024). Implementation of machine learning techniques with big data

and IoT to create effective prediction models for health informatics. Biomedical Signal

Processing and Control, 94, 106247.

Zamani, A. S., Akhtar, M., Siddique, A. T., & Tanweer, S. (2012). Android Basic Architecture

including Operating System using their Application. International Journal of

Managment, IT and Engineering, 2(4), 142-155.

Zamani, A. S., Rajput, S. H., Bangare, S. L., & Ray, S. (2022). Towards Applicability of

Information Communication Technologies in Automated Disease Detection.

International Journal of Next-Generation Computing, 13(3).

Jasti, V. D. P., Zamani, A. S., Arumugam, K., Naved, M., Pallathadka, H., Sammy, F., ... &

Kaliyaperumal, K. (2022). Computational technique based on machine learning and

image processing for medical image analysis of breast cancer diagnosis. Security and

communication networks, 2022(1), 1918379.

Zamani, A. S., & Hashim, A. H. A. (2023). Integrating Metaheuristics Methods To Detect Real-

Life Glaucoma Problem Using Machine Learning Techniques. Educational

Administration: Theory and Practice, 29(4), 627-634.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

7 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

Kaur, Gaganpreet, Nirmal Adhikari, Singamaneni Krishnapriya, Surindar Gopalrao Wawale,

R. Q. Malik, Abu Sarwar Zamani, Julian Perez-Falcon, and Jonathan Osei-Owusu.

"Recent advancements in deep learning frameworks for precision fish farming

opportunities, challenges, and applications." Journal of Food Quality 2023, no. 1 (2023):

4399512.

AlAjmi, M., Khan, S., & Zamani, A. S. (2012). Using instructive data mining methods to revise

the impact of virtual classroom in e-learning. International Journal of Advanced

Science and Technology, 45(9), 125-134.

Zamani, A. S., Akhtar, M. M., & Ahmad, S. (2011). Emerging cloud computing paradigm.

International Journal of Computer Science Issues (IJCSI), 8(4), 304.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

