
1

Developing Parallel Requirements Prioritization Machine

Learning Model Integrating with MoSCoW Method

Kawthar Ishag Ali Fadlallah 1*, Mahir M. Sharif 2, Moawia Elfaki Yahia Eldow 3

1 Department of Computer Science, Omdurman Islamic University, Omdurman, Sudan

2Department of Computer and Self Development, Common First Year Unit , Prince Sattam bin Abdulaziz University, AlKharj

11642, Saudi Arabia

2 Computer Science Dept. _Faculty of Computer Science & Information Technology _ Omduram Islamic University _ Omduram

_Sudan

3 Faculty of Mathematical Science, University of Khartoum, Khartoum 11115, Sudan, University of North Texas, Denton, TX,

USA

*Correspondence: E-mail: kawthar1140r@gmail.com

A r t i c l e I n f o A B S T R A C T
Article History:

Submitted/Received 20 July 2024

Revised in revised format 25 August

2024

Accepted 01 October 2024

Available Online 15 October 2024

Publication Date 15 October 2024

Keyword:

Requirements Prioritization,

Parallel Ranking,

MoSCoW Method,

Random Forest

Cite this article: Fadlallah, K. I. A.,

Sharif, M. M., & Eldow, M. E. Y.

(2024). Developing parallel

requirements prioritization machine

learning model integrating with

MoSCoW method. Journal of Artificial

Intelligence and Computational

Technology, 1(1).

COPYRIGHT © 2024 First author, et

al. This is an open access article

distributed under the terms of the

Creative Commons Attribution

License (CC BY).

Requirements Prioritization (RP) is an attempt to rank the requirements

based on the value added to the business. It is a preprocessingstep in

software implementation as well as a prevalent need thing to get

customer satisfaction, decrease the risk of requirements volatility,

develop cost-effective software, and maintain the level of quality in the

software system. Many research focusing on prioritizing the

requirements using one or several criteria like time, dependency, and

scalability. However, all of them concern with sequential prioritization

only. To the best of our knowledge no work focused on parallel ranking

in prioritization, which permit the simultaneous requirements

implementation that reducing the implementation time. In this study we

developed a new requirements prioritization for determine the

requirements priority level in parallel format using Random Forest

classifier based MoSCoW method (RF-MM). When we applied our

prioritization model on to (Testcase MIS system with priority) industrial

dataset. the total implementation time were equal to 76.0 seconds when

ranking in sequential format; whereas the total time were equal to 33

seconds in parallel ranking. Hence, the parallel ranking capable of

reducing implementation time to more than half.

Journal of Artificial Intelligence and Computational

Technology

Journal homepage: https://ojs.omgfzc.com/index.php/JECT

Journal of Artificial Intelligence and Computational Technology 1(1),2024,61-76

Author, Article Tittle… | 2

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

1. Introduction
Requirements Prioritization (RP) is one of the pivotal activities in requirements engineering process.

RP is defined as a decision-making process in which software engineers cooperate with stakeholders,

to understand their demands, to define the application order of requirements by considering the cost,

time, and technical constraints. RP aims is to evaluate requirements and concentrate on the most crucial

ones based on the value that they can add to the business.

The concept RP appeared with the increased requests of complex software systems by stakeholders

(Aurum, 2005). It is proven that it is very difficult to implement all stakeholders' requirements in a

single release due to the increasing number of requirements from the availability of massive volume of

data (big data) with inadequate resources such as time, lacking budget, and technical staff (Dabbagh &

Lee., 2013). Moreover, the different opinions about requirements prioritization by different

stakeholders make the RP task hard (Bukhsh et al., 2020). Another challenging aspect in RP is handling

requirements dependency (RD), which means the requirements are dependent or reliant on each other

(Sher et al., 2020). Therefore, the requirements prioritization must be considered, in order to get

customer satisfaction, decrease the risk of requirements volatility, develop cost-effective software, and

maintain the level of quality in the software system (Aurum, 2005; Sher et al., 2020).

The use of machine learning (ML) has increased in different areas, both industrial and academic (Marco

et al., 2020). the most important advantages of ML, as the following: (i) ML techniques can assist faster

decision-making and solutions to complex problems (ii) enhance performance in several regions

(Achimugu et al., 2014). (iii) permit the automation of various tasks; and (iv) allow the prediction of

favorite values of a particular sets and to make approximate ranks for requirements via modeling

founded on training data. the modern ML techniques can improve features such as scalability and

performance.

Several machine learning techniques for RP have been presented in the literature such as (Shao et al.,

2017; Gupta & Gupta., 2018; Chua et al., 2022). Each technique uses one or numerous criteria in

prioritizing requirements. However, all techniques have limitations, not only associated with scalability

and requirements dependencies (Achimugu et al., 2014; Shao et al., 2017), but also due to unawareness

on the impact of the requirements prioritization on reducing software implementation time.

Our model reduces the software implementation time, due to the awareness of parallel ranking process

in RP. It conserns the determining and classifing the requirements priority levels into in parallel format

which permit batch implementation using Random Forest classifier based MoSCoW method. We apply

our model to the Testcase MIS system with priority dataset.

We develop machine learning model integrated with MoSCoW Method, that determine the

requirements priority level in parallel format from an input Testcase MIS system with priority dataset

after putting the values in an appropriate pattern, then removes null values and applies rules to

determine the parallel priority level.

Our study aims to build a machine learning model relied on the software requirements document to

determine the proper priority level by determining the MoSCoW categories (Must, Should, Could, and

Wouldn’t) as priority levels (High, Medium, and low) in parallel format. Parallel format, which reduce

the implementation time via simultaneous requirements implementation. The total implementation

time we achieved were equal to 33 seconds in parallel ranking formant; whereas The total

implementation time were equal to 76.0 seconds when ranking in sequential format.

2. Related Works

Machine learning approaches have been heavily used to develop requirements prioritization

approaches (Qayyum, & Qureshi, 2018; Jan et al., 2020; Bukhsh et al., 2020). These approaches were

believed very effective due to the automation and tools supporting their implementation. Machine

learning and data mining techniques has the capability to automation, resolve the

conflicts between the stakeholders and developers (Hujainah et al., 2018; Sher et al., 2020), etc., high

level of handling the scalability problem (Hudaib et al., 2018; Hujainah et al., 2018; Sher et al., 2020;

Amelia& Mohamed 2022). We will show the previous research in this field. Most researchers had

proposed algorithms to prioritize and classify the software requirements which handling the

dependency between requirements. In this section, we will show the previous research in this field.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

3 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

(Alrashoud & Abhari., 2015) presented a mathematical interpretation to model that tactile the

uncertainty open issues in human estimation and their limited knowledge, using Fuzzy Inference

System (FIS). They identify the Weighted importance, dependency constraints, and the risk criteria. The

results demonstrated that the FIS model has achieved a higher degree of satisfaction when compared

to a genetic algorithm-based model. However, the accuracy is not estimated.

(Allex et al., 2016) presented Interactive Next Release Problem (iNRP) model for requirements

prioritization. The model utilizes Least Median Square (LMS) and Multilayer Perceptron (MLP)

techniques. In the iNRP model two architectural settings is specified by decision maker(DM), the

weight of the tacit preferences is compared to the explicit ones for the suitability calculation. Then, the

learning process is executed using the set of samples captured in the preceding stage as a training

dataset. However, the performance of this learning model has not been evaluated.

(Shao et al., 2017) developed a semi-automatic requirements prioritization approach, called Drank.

Drank takes the dependencies among requirements and the stakeholders’ preferences into

consideration. Rank employs RankBoost algorithm to produce requirement prioritization formula in

subjective manner. a controlled experiment made to validate the DRank efficiency, constructed on

comparisons with Case Based Ranking, AHP, and EVOLVE. The results provided more effectiveness

as compared with alternative approaches. However, this work seems to provide only the contribution

and business dependencies. Further, the authors highlight that their approach is still motivated to the

issue of subjectivity especially in the process of requirements evaluation.

(Gupta & Gupta., 2018) proposed a dependency based collaborative requirement prioritization

approach termed (CDBR), Three aspect measured in CDBR are dependencies between requirements,

stakeholder and developers and scalability. They providing improvements in prioritization results,

processing time, and producing acceptable and accurate priority list in comparison to AHP and IGA.

However, it ignores the errors (false positive rate) implicated during the prioritization process.

(Gupta & Gupta., 2018) presented collaborative requirement prioritization method to support

developers in making right decision during prioritization via dependency classification and weight

assignment method Good result achieved in term of low complexity when compared with existing

method. However, it limited to three type of dependency, suffer from biases issues, lack of automation.

(Misaghian et al., 2019) presented a requirement prioritization approach, using fuzzy graph algebra

weighted page rank algorithm tensor decomposition. In this approach, they mixed requirements order

provided by tensor decomposition with the dependency order. The Results showed the improvements

in accuracy, time consuming, and ease of use. However, it limited only t to the increase/decrease cost

dependency type, and it ignores the stakeholders’ conflicts.

(Abbas et al., 2019) presented a requirements prioritization method using a modified PageRank

algorithm. The method restricted dependency type defined in Ecore meta-model. The Results showed

the method outperform five existing requirements prioritization methods in terms of efficiency and

accuracy. However, it limited to dependency type defined in Ecore meta-model and suffers from lack

of automation.

(Gupta & Gupta., 2022) presented a scalable framework for prioritizing the requirements of obtaining

the inputs from both stakeholders and developers. They used Intuitionistic Fuzzy Approach (IFS) to

support stakeholder’s opinion. Whereas the developer’s offer dependency graph as their part of the

input. the initial priority values calculated using Weighted Page rank. The result indicates that this

framework is proficient of providing accurate and comparable results by handling technical constraints

of dependency as compared to existing techniques. However, the requirement prioritization accuracy

was not improved with less time.

(Devadas & Cholli., 2022) presented a novel method called the Interdependency-aware Qubit and

BrownRoost Rank (IQ-BR) method to prioritize the large set of requirements. fairly good result had

been achieved in in term of precisely and lessening the noise in a large set requirement prioritization.

IQ-BR outperform CDBR, and IFS in term of accuracy which was detected to be 95%, 90%, and 91.66%

respectively. However, it fails to address uncertainty and test suite execution issue among diverse

stakeholders for large scale software requirements prioritization and the absent of supporting tool is

also seen.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 4

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

 (Eldrandaly.,2023) presented a multi-criteria decision making (MCDM) framework for requirements

prioritization, adopting the DEMATEL and TOPSIS methods in the neutrosophic environment. using

the type-2 neutrosophic numbers (T2NNs) to compute and rank the criteria importance. The DEMATEL

method used in the framework handles the interdependency between the requirements. Then the

T2NN-based TOPSIS is used to rank the requirements. Lastly, the proposed frame work evaluated via

case study. Good result achieved in addressing the fuzziness and vagueness in the stakeholders’

decisions However, it needs to be tested on a large project for further validation.

As we noted in the previous works, all papers focus on handling the dependency between requirements

when prioritizing the requirements as (Shao et al., 2017; Gupta & Gupta., 2018; Devadas & Cholli.,

2022)] by using different techniques, concern with sequential prioritization only. There is no work

focused on the impact on requirements prioritization on the software implementation time, building a

model to determine the priority level (High, Medium, and low) and reduce the software

implementation time. We develop a classification model concerning the parallel ranking in

prioritization, which permit the simultaneous requirements implementation that reducing the

implementation time. We aim to gain high rate of reducing the implementation time and other factors

represented in determining priority level (high, Medium, and low), scalability, automation.

3. Research Model

In this research, we developed a machine learning model, which containing data elicitation and

preprocessing and three main phases, namely: Phase 1: Initial weight for prioritization criteria

assignment provided by both stakeholders and developers; Phase 2 : Introduce the concept of parallel

ranking in requirements prioritization to reduce the software implementation time through

simultaneous implementation; and finally, Phase 3: A classification technique using Random Forest-

based MoSCoW Method (RF-MM). We applied our model to (Testcase MIS system with priority)

industrial dataset. Figure 1 illustrates our proposed model

3.1 The Proposed Model

In the research, we will develop a machine learning model for determines the requirements

prioritization; figure 1 illustrates our proposed model. The first step beginning with data elicitation and

preprocessing; Then the stakeholders and developers provided the initial priory for each requirement.

After that we apply the MoSCoW method and the concept of parallel prioritization; Finally, we will

apply a classification technique called Random Forest classifier based MoSCoW method. Therefore, a

research model designed for precisely determine the RP in parallel format, from requirements

document. The following steps explain how our proposed model work:

1. Elicit the requirements in term of software requirements specification(SRS) document.

2. Prepare the software requirements specification document.

3.Stakeholders and developer prioritization

 3.1. Pick score for each requirement according to prioritization criteria.

 3.2. Identify the dependency between requirements criteria.

 3.2. Calculate score for each prioritization criteria.

 3.3. Rank the requirements.

3. Firstly, apply MoSCoW method

 3.1. Classify the requirements into (Must, Should, Could, and Wouldn’t).

3. Secondly, apply MoSCoW Parallel Prioritization

 3.2. Classify each MoSCoW class to priority level (High, Medium, and Low).

 3.3. Ensure the requirements dependency.

 3.4. Rank the requirements in parallel format when they in the same MoSCoW class with the

same priority level and no dependency between them.

 3.5. Drop Wouldn’t category.

 3.5 Calculate implementation time.

4. lastly, apply Random Forest classifier algorithm.

 4.1. Specify the values in the requirements document as:

 4.1.1. prioritization criteria (Cost, Time, Complexity and Importance).

 4.1.2. MoSCoW method categories and levels.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

5 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

5. Final prioritized list in parallel format with less implement time.

Figure 1. Proposed Model.
3.2 Model Concepts

Stakeholders indicate ones who will describe the look of organization and will document the

requirements (Gupta & Gupta., 2018). Stakeholders’ emphasis customer satisfaction in term of urgency,

needs, and business values (Keertipati et al., 2016; Gupta & Gupta., 2018; Gambo et al., 2021). Developer

denotes engineers who develop or maintain related systems (Ahmad et al., 2022). Developers are

concerned with project features such as effort and cost (Keertipati et al., 2016; (Devadas & Cholli., 2022).

The MoSCoW abbreviation was created by (Clegg &. Baker), who in 1994 proposed the classification of

requirements into Must Have, Should Have, Could Have and Won’t Have. MoSCoW stands for "Must

have," "Should have," "Could have," and "Won't have" prioritization categories. The four MoSCoW

categories are defined as follows:

1. Must-Have (M): Identify the requirements that are absolutely critical for the success of project.

These are non-negotiable and form the core of the project. Focus on defining and prioritizing

the requirements that are essential for achieving the project's primary objectives.

2. Should-Have (S): List the requirements that are important but not as critical as the Must-Have

items. These requirements significantly contribute to the project's success, but their omission

would not be catastrophic. Prioritize them based on their importance, impact, and alignment

with project goals.

3. Could-Have (C): Include requirements that are desirable but not essential for the project's

immediate success. These are typically nice-to-have features or functionalities that can enhance

the project but can be deferred if necessary. Prioritize these based on their potential to add

value or improve the project.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 6

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

4. Won't-Have (W): This category includes requirements that are explicitly excluded from the

current project scope. These are items that are not essential or beneficial to the current project

and can be considered for future iterations or separate projects.

MoSCoW considers the best prioritization technique when applying on huge set of requirements

because it was the easiest, fastest and provide the highest user interference.

Definition 1. We define parallel ranking (PR), as a requirements Req in a particular class in MoSCoW

method with the same priority level, and no dependency relation with other requirements, then

possible set of requirements will be implemented simultaneously or in parallel manner. Given three

requirements A, B and C, such that (A, B, C) exist in Must class in MoSCoW, and in high level then:

The three requirements A, B and C cloud be implemented at the same time. This could result in

reducing the software implementation time. The whole process of prioritization is summarized in

Figure 2.

Figure 2. Prioritization process.

Developers

 ؟؟؟

Stakeholders

 ؟؟؟

ranks

 ؟؟؟

ranks

r؟؟؟

show show

Final process

Automation

MoSCoW
Prioritization

prioritization process

Moscow Parallel
Prioritization

Final priority rank

ordered requirements in parallel format
Calculate implementation time

ordered requirements based

MoSCoW (M, S, C,W)

input for

automatic

prioritization

Set of requirements

Initial prioritization process

MoSCoW Method combined with

Random Forest classifier

https://doi.org/10.70274/medbiohealth.2024.1.1.18

7 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

3.2.1 Stakeholder and developer’s initial priority assignment

 The stakeholders will pick a weight for each prioritization criteria. The prioritization criteria for the proposed

model include MoSCoW, cost, time, complexity and importance. The proposed model prioritization criteria are

represented in Table 1. The total weight will select by stakeholders for all requirements criteria will be 100 percent.

Table 2 shows an example of criteria weight for the proposed requirements prioritization model.

Table 1: Prioritization criteria and their description

Criteria

Description

MoSCoW Measure the impact of requirements using MoSCoW Method

Cost Measure the cost required in developing the application

Time Measure the time required to develop application

Complexity Measure the requirements complexity

Importance Measure the importance of requirements.

 Table 2: Example of criteria weight for requirements prioritization

Criteria Weight %

MoSCoW 10%

Cost 15%

Time 20%

Complexity 25%

Importance 30%

Total 100%

Developers adopt matrix based on dependence graph to represent dependency among requirements.

The stakeholders and developer’s initial priority are considered as ‘‘perfect” preferences. These

preferences will use as guide for estimation in MoSCoW ranking.

3.2.2 MoSCoW Prioritization

Within the stakeholder and developer’s initial ranking in mind, MoSCoW method will progress

towards identify and classify the requirements consequently. MoSCoW represents a guideline to

confirm the basic importance of the requirements. The key stakeholders distribute the requirements

into four categories (Must, Should, Could and Wouldn’t) and three level (High, Medium, and Low)

by applying MoSCoW method. The rating method for MoSCoW method is depending on the criteria

(e.g: 1 - the maximum important priority, 4 - the minimum important priority) stated in Table3

Table 3: Rating criteria for MoSCoW Method

Criteria Rate

Must 1

Should 2

Could 3

Won’t 4

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 8

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

The stakeholders and developers will then use numerical assignment techniques to score the rating for

further prioritization criteria as defined in (Chua et al., 2022), table 4 shows rating criteria. The rating

method for these criteria is based on the criteria in table 4 with the scale of 1 to 10 (e.g: 1 - the fewer

important priority, 10 - the greatly important priority). The rating method for importance criteria is

based on the criteria (e.g: 1 - the very important priority, 3 - the less important priority) (Chua et al.,

2022) in Table.5.

Table 4: Rating criteria for cost, time, and complexity

Criteria Rating

Cost 1-10

Time 1-10

Complexity 1-10

Table 5: Rating criteria for importance

Criteria Rating

High 3

Medium 2

Low 1

The prioritization part will begin with computing the rate based on the initial set of prioritized

requirements by the stakeholders and developers. The weight criteria and rating method recognized

previously will be used in computing the rate for requirements prioritization. The formula for

computing each criteria of the requirement are defined as equations defined (Chua et al., 2022) (1), (2),

(3), (4), and (5).

𝑀𝑜𝑆𝐶𝑜𝑊 → 𝑠𝑐𝑜𝑟𝑒/ 4 ∗ 𝑚𝑜𝑠𝑐𝑜𝑤_𝑤𝑒𝑖𝑔ℎ𝑡 (1)

𝐶𝑜𝑠𝑡 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑐𝑜𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 (2)

𝑇𝑖𝑚𝑒 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑡𝑖𝑚𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 (3)

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑤𝑒𝑖𝑔ℎ𝑡 (4)

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 → 𝑠𝑐𝑜𝑟𝑒 / 3 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 (5)

The total rates for requirements criteria will be computed using equation (6) when the criteria of each

requirement are calculated.

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 → 𝑀𝑜𝑆𝐶𝑜𝑊 + 𝐶𝑜𝑠𝑡 + 𝑇𝑖𝑚𝑒 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (6)

3.2.3 MoSCoW Parallel Prioritization

Parallel prioritization concepts implemented when the requirements in the same MoSCoW category

and the same priority level with no dependencies. For example, if Req2, Req3, and Req4 in are ranked

according to MoSCoW method in (Must) category, and the same priority level(high) with no

dependencies between them. Therefore, it could be implemented simultaneously to reduce the

implementation time, which may contribute in accelerating the other higher level in software

development. Then calculate implementation time: To confirm the hypothesis of simultaneous

implementation of the requirements in parallel format could reduce the implementation time, the

model must calculate implementation time using mathematical equations.

To calculate the implementation time, the time must be estimated for every requirement. The estimated

time allocated for each requirement in each category (Must Have, Should Have, Could Have and

https://doi.org/10.70274/medbiohealth.2024.1.1.18

9 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

Wouldn’t), based on required resources like complexity and cost. Then the (star_ time and finish_ time)

must be estimated for each MoSCoW category as following:

In Must category(M) the star_ time==0, finsh_time ==finsh_time_m

In Should category(S) the star_ time== finsh_time_m, finsh_time== finsh_time_s

In Could category(C) the star_ time== finsh_time_s, finsh_time== finsh_time_C.

The Wouldn’t category could be dropped. Calculate the total time for each Category through making

summation of the estimated times for all requirements in each category (Must Have, Should Have,

Could Have). The requirements within the same MoSCoW category and with the same priority levels

when no dependencies can be considered for simultaneous implementation to reduce the

implementation time.

3.2.4 A classification technique using Random Forest-based MoSCoW Method (RF-MM)

The classification process utilizes machine learning techniques in generating the priority levels and

final priority ranks of requirements which contains two parts, prioritization and prediction.

Specifically, Random Forest classifier -based MoSCoW Method (RF-MM) is used. The purpose of this

classification model is to predict the priority levels. The second part of the proposed RF-MM model

automatic prioritization is prediction of requirements priority level. The final priority rank will be

calculated as a result represented as output of Random Forest-based MoSCoW Method (RF- MM). It

uses these MoSCoW ranking for estimate of its final output concluded series of iterations. Classification

done using and 70% split (i.e. 70% training, 30% testing). The training data consists of 70% of the original data

(current requirements) and the other 30% of the data (new requirements) will be used as testing data.

3.3 Implementation: (The Proposed Model Random Forest classifier based MoSCoW method)

Our proposed model contains two techniques the first one concerned with dividing the requirements

into four categories according to MoSCoW method namely Must have, should have, could have and

Wouldn’t have. The second techniques use the output of the first techniques to determine the final

priority of the requirements in the document in parallel format.

Our proposed model uses the output of the MoSCoW parallel prioritrization as input to determine the

final priority of the requirements in the document in parallel format. There are several steps illustrated

as following:

Preprocessing step: This step involves removing the noisy data of the requirements features, handling

the missing values of the requirements features in order to attain optimal classification results.

preprocessing concerns with the occurrence of the null values. null values is an inherent problematic

in many real datasets, particularly when dealing with large datasets. Therefore, it vital to handle the

null values (fill in the values or eliminated if not important), or solving the variations in the data before

it is transformed into a comprehensible format. Once the requirements are pre-processed, the feature

sets from the requirements features set are created. Finally, the extracted feature vectors are fed to

classifier methods for testing.

Training: Train a Random Forest classifier using the Testcase MIS system with priority dataset,

where the input features are the attributes of requirements, and the target variable is the priority level

(High, Medium, and Low) according to MoSCoW method category and the implementation time

estimation.

We built these classifiers using the Scikit-Learn library, a well-established machine learning package

for Python. Scikit-Learn offers numerous utility functions for data preprocessing, model validation,

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 10

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

and metric computations. The goal of our study is to achieve the best combination of the MoSCoW

method and the Random Forest classifier as supervised learning techniques for prioritizing and

classifying software requirements, with an added focus on estimating implementation time. The

algorithm for our model is shown in Figure 3.

Testing and Prediction: Once the model is trained and evaluated, I can use it to predict the priority levels

of new requirements based on their attributes.

 Classification Model algorithm

Input: the data set obtained from our MoSCoW parallel prioritization

Output: Pattern as values

Input prioritization criteria values (Cost, Time, Complexity and Importance).

Find pattern as values using Regular Expressions Array
If Importance is 1 Then

Req in Must MoSCoW_category == 'M'

if priority == 'High':

m_h.allocted(req) in array

elif priority == 'Medium':

m_m. allocted(req) in array

elif priority == 'Low':

m_l. allocted(req) in array

Else IF Importance is 2 Then

Req in Should MoSCoW_category == 'S'

if priority == 'High':

 s_h. allocted(req) in array

elif priority == 'Medium':

 s_m. allocted(req) in array

elif priority == 'Low':

s_l.allocted(req) in array

Else IF Importance is 3 Then

Req in Could MoSCoW_category == 'C'

if priority == 'High':

c_h. allocted(req) in array

elif priority == 'Medium':

c_m. allocted(req) in array

elif priority == 'Low':

c_l. allocted(req) in array

Else IF Importance is 4 Then

if priority == 'High':

w_h. allocted(req) in array

elif priority == 'Medium':

w_m. allocted(req) in array

elif priority == 'Low':

w_l. allocted(req) in array

calculate the total implementation time for requirements within each MoSCoW category

considering dependencies

Drop Wouldn’t category

for each MoSCoW category (M, S, C):

https://doi.org/10.70274/medbiohealth.2024.1.1.18

11 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

if No of Req in the same MoSCoW class with the same priority level & No dependency

among them:

Rank them in parallel format.

END.

Figure 3. Classification model algorithm

3.3 Model Evaluation

To confirm the hypothesis that implementing requirements in parallel format can reduce

implementation time, the model calculates this time using mathematical equations. We computed the

total implementation time for the "Must," "Should," and "Could" categories according to the MoSCoW

method and compared the results. Figures 4 and 5 illustrates these findings.

total Moscow: 218.75

total cost: 2392.95

total time: 115.15

total complexity: 102.5

total importance: 291.66

Time: 33.0

Figure 4. parallel ranking implementation

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 12

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

total Moscow: 218.75

total cost: 2392.95

total time: 115.15

total complexity: 102.5

total importance: 291.66

Time: 76.0

Figure 5. Sequential ranking implementation

4. Results Discussion

Experiments on automated requirements priority detection were conducted using the Testcase MIS

system with a priority dataset. We trained the requirements prioritization model on 1,314 requirements

within this dataset and observed a promising reduction in implementation time. Specifically, parallel

ranking reduced implementation time to 33 seconds, compared to 76 seconds in a sequential setup. This

demonstrates that parallel ranking can cut implementation time by more than half, proving its

effectiveness in optimizing requirements prioritization.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

13 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

Table 7: Study Comparisons

 CDBR(2018) SARiP (2022) IQ-BR(2022) Proposed Model RF-MM

(2024)

Automation semi-automated semi-automated Full-automated Full-automated

Prioritization

criteria

Stakeholders

and developer’s

Communication,

Dependency.

Scalability, and

Importance

Stakeholders

prioritization,

Cost, Time,

Complexity,

Risk, and

Importance

Customer

prioritization,

Dependency

Accuracy,

Prioritization time.

Stakeholders and

developer’s criteria,

Dependency, Cost, Time,

Complexity, Importance,

and Scalability

No of input

Requirements

100 Not estimated 60 >149

Scalability Considered Not Considered Considered Considered

Parallel RP - - - Considered

Awareness

with the effect

of RP on

software

developments

cycle

- - - Considered

Implementation

time

- - - Considered

5.Conclusion

In this paper, we designed a machine learning model integrated with MoSCoW method, capable of

determining requirement priority levels in a parallel format, significantly reducing implementation

time. When measuring this reduction, we found that sequential ranking required 76 seconds, while

parallel ranking reduced this to 33 seconds. This demonstrates that parallel ranking can cut

implementation time by more than half. The model was applied to a Testcase MIS system with a priority

dataset, providing valuable insights into the impact of priority ranking on software development

cycles. Based on our findings, this research represents a step forward in computational intelligence.

Future work will evaluate the model's performance in classification and priority level determination.

6. ACKNOWLEDGMENT

This work was supported by the Deanship of Scientific Research at Omdurman Islamic University,

Omdurman, Sudan.

FUNDING:

 “This research received no external funding”

7. REFERENCES

1. Aurum, A. (2005). Engineering and managing software requirements (Vol. 1). C. Wohlin (Ed.).

Heidelberg: Springer.

2. Dabbagh, M., & Lee, S. P. (2013, July). A consistent approach for prioritizing system quality

attributes. In 2013 14th ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (pp. 317-322). IEEE.

3. Bukhsh, F. A., Bukhsh, Z. A., & Daneva, M. (2020). A systematic literature review on

requirement prioritization techniques and their empirical evaluation. Computer Standards &

Interfaces, 69, 103389.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

Author, Article Tittle… | 14

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.
p- ISSN 34562-3478 e- ISSN 5443-1243

4. Sher, F., Jawawi, D. N., Mohammad, R., Babar, M. I., Kazmi, R., & Shah, M. A. (2020). Multi-

aspects Intelligent Requirements Prioritization Technique for Value Based Software Systems.

In Intelligent Technologies and Applications: Second International Conference, INTAP 2019,

Bahawalpur, Pakistan, November 6-8, 2019, Revised Selected Papers 2(pp. 357-371). Springer

Singapore.

5. Barenkamp,M., Rebstadt, J., & Thomas, O.(2020). Applications of AI in classical software

engineering. AI Perspectives, 2(1):1.

6. Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. R. (2014). A systematic literature

review of software requirements prioritization research. Information and software

technology, 56(6), 568-585.IEEE.

7. Shao, F., Peng, R., Lai, H., & Wang, B. (2017). DRank: A semi-automated requirements

prioritization method based on preferences and dependencies. Journal of Systems and

Software, 126,141-156.

8. Gupta, A., & Gupta, C. (2018). CDBR: A semi-automated collaborative execute-before-after

dependency-based requirement prioritization approach. Journal of King Saud University-

Computer and Information Sciences, 34(2), 421-432.

9. Chua, F. F., Lim, T. Y., Tajuddin, B., & Yanuarifiani, A. P. (2022). Incorporating semi-automated

approach for effective software requirements prioritization: A framework design. Journal of

Informatics and Web Engineering, 1(1), 1-15.

10. Alrashoud, M. and Abhari, A. (2015) Intelligent Automation & Soft Computing Perception-

Based Software Release Planning, Intell. Autom. Soft Comput., vol. 21, no. 2, pp. 175–195, doi:

10.1080/10798587.2014.960229.

11. Allex, A., Matheus, A., I. Yeltsin, Dantas, A., and J. Souza, (2016). An Architecture based on

interactive optimization and machine learning applied to the next release problem, Autom.

Softw. Eng., vol. 24, no. 3, pp. 623–671, doi: 10.1007/s10515-016-0200-3.

12. Gupta, A., & Gupta, C. (2018, August). Towards dependency based collaborative method for

requirement prioritization. In 2018 Eleventh International Conference on Contemporary

Computing (IC3) (pp. 1-3). IEEE.

13. Misaghian, N., Motameni, H., & Rabbani, M. (2019). Prioritizing interdependent software

requirements using tensor and fuzzy graphs. Turkish Journal of Electrical Engineering and

Computer Sciences, 27(4), 2697-2717.

14. Abbas, M., Inayat, I., Jan, N., Saadatmand, M., Enoiu, E. P., & Sundmark, D. (2019, December).

Mbrp: Model-based requirements prioritization using pagerank algorithm. In 2019 26th Asia-

Pacific Software Engineering Conference (APSEC) (pp. 31-38). IEEE.

15. Eldrandaly, B. K. (2023). A Framework of Type-2 Neutrosophic for Requirements

Prioritization. Neutrosophic Sets and Systems, 53, 421-432.

16. Qayyum, S., & Qureshi, A (2018, November). A survey on machine learning based requirement

prioritization techniques. In Proceedings of the 2018 International Conference on

Computational Intelligent Systems (pp. 51-55).

17. Jan, N., Inayat I., and Abbas, M. (2020). An Empirical Evaluation of Requirements Prioritization

Techniques. Marketing and Branding Research,7 (1), 11.

18. Hujainah, F., Bakar, R.B.A., Al-haimi, B.& Abdulgabber,M.A.(2018). Stakeholder quantification

and prioritisation research: A systematic literature review.Information and Software

Technology ,102, 85–99, https://doi.org/10.1016/j.infsof.2018.05. 008.

19. Hudaib,A., Masadeh, R., Qasem, M.H., & Alzaqebah, A.(2018). Requirements Prioritization

Techniques Comparison. Modern Applied Science, 12(2), 62.

20. Amelia, T., & Mohamed, R. (2022). A Review: Requirements Prioritization Criteria Within

Collaboration Perspective. Journal homepage: http://www.pertanika.upm.edu.my/.

21. Ahmad, S., Rizawanti, R., Woodings, T., & Jalil, I. E. A. (2022). MCBRank Method to Improve

Software Requirements Prioritization. International Journal of Advanced Computer Science

and Applications, 13(7).

https://doi.org/10.70274/medbiohealth.2024.1.1.18
https://doi.org/10.1016/j.infsof.2018.05.%20008
http://www.pertanika.upm.edu.my/

15 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2024.1.1.18.

p- ISSN 34562-3478 e- ISSN 5443-1243

22. Keertipati, S., Savarimuthu, B. T. R., &. Licorish. S. A. (2016, June). Approaches for prioritizing

feature improvements extracted from app reviews. In Proceedings of the 20 th international

conference on evaluation and assessment in software engineering (pp. 1-6).

23. Gambo, I. P., Ikono, R., Iroju, O. G., Omodunbi, T. O., & Zohoun, O. K. (2021). Hybridized

ranking model for prioritizing functional software requirements: Case study

approach. International Journal of Software Innovation (IJSI), 9(4), 19-49.

https://doi.org/10.70274/medbiohealth.2024.1.1.18

