
1

Machine Learning Approach Integrated with MoSCoW Method for

Parallel Requirements Prioritization
Kawthar Ishag Ali Fadlallah1*, Moawia Elfaki Yahia Eldow2, Anwer Mustafa Hilal3, Khalid Mohammed Osman Saeed4,

Mohammed Mohammed Osman Mokhtar5

1Faulty of Computer Science &Information Technology, Department of Computer Science, Omdurman Islamic University,

Omdurman, Sudan

 2Faculty of Mathematical Science, University of Khartoum, Khartoum 11115, Sudan, University of North Texas, Denton, TX, USA

3Department of Information System, Omdurman Islamic University, Omdurman, Sudan

4Department of Information System, Omdurman Islamic University, Omdurman, Sudan

5Department of Information System, Omdurman Islamic University, Omdurman, Sudan

*Correspondence: E-mail: kawthar1140@gmail.com

A r t i c l e I n f o A B S T R A C T
Article History:

Submitted/Received 11-Jan 2025

Revised in revised format 15 Feb2025

Accepted 02 Mar 2025

Available 02-Mar 2025

Publication Date 01 Apr 2025

Keyword:

Requirements Prioritization,

Evaluation,

Implementation time,

Accuracy ______________

Cite this article: Fadlallah, K. I. A., &

Eldow, M. E. Y. (2025). Machine
Learning Approach Integrated with

MoSCoW Method for Parallel

Requirements Prioritization. Journal of

Artificial Intelligence and

Computational Technology, 1(1).

COPYRIGHT © 2025 Fadlallah, et

al. This is an open access article

distributed under the terms of the

Creative Commons Attribution

License (CC BY).

 Requirements prioritization (RP) is one of the vital activities carried out

through requirements engineering process. Requirements prioritization

includes the selection of requirements that are reflected more important

from elicited list of stakeholders' requirements. Making an incorrect

selection will not only reduction the quality of the developed software

but it will also earn extra cost for refinement processes in later stages.

Thus, requirements prioritization would aid to determine the most

appropriate requirements in different software product releases. Many

research focusing on prioritizing the requirements using one or several

criteria like time, dependency, and scalability. However, most of these

studies address sequential prioritization only. To the best of our

knowledge, no research has explored parallel ranking in prioritization,

which allows for simultaneous requirements implementation, thereby

reducing implementation time. Furthermore, as the volume of

requirements grows, scalability becomes a critical issue. Manual

prioritization is time-consuming and increases the likelihood of

overlooking essential. Machine learning is increasingly popular for

automating requirements prioritization. In this study we developed

automated parallel requirements prioritization approach (APRP) for

determine the requirements priority level in parallel format using

Random Forest classifier based MoSCoW method (RF-MM). The

proposed approach consists of two main modules, data elicitation and

pre-processing module and prioritization module, which include

established weight assignment, MoSCoW parallel prioritization, and

classifier methods. Experiments on the industrial dataset (Testcase MIS

system with priority) revealed that the total implementation time for

sequential ranking was 76.0 seconds, whereas it was reduced to 33.0

seconds for parallel ranking. Thus, parallel ranking reduced

implementation time by more than half. We achieved a maximum

accuracy of 94.87%, precision of 92.31%, and recall of 92.31%.

Journal of Artificial Intelligence and Computational

Technology

Journal homepage: https://ojs.omgfzc.com/index.php/JAICT

Journal of Artificial Intelligence and Computational Technology 1(2),2025,1-18

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 2

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

1. Introduction

Requirement prioritization (RP) is one of the vital activities carried out through requirements

engineering process. Requirement prioritization includes the selection of requirements that are

reflected more important from a collected list of stakeholders' requirements. Making an incorrect

selection will not only reduction the quality of the developed software but it will also earn extra cost

for refinement processes in later stages. Thus, requirements prioritization would aid to determine the

most appropriate requirements in different software product releases.

The concept RP appeared with the increased requests of complex software systems by stakeholders

(Aurum, 2005), and due to huge numbers of software requirements. Hence, the issue of scalability in

prioritizing the requirements is become essential. Scalability denotes the capability to handle a large

number of requirements i.e. more than 100 (Lunarejo, 1021). Accordingly, because the requirements

amount is huge and manual prioritization is considered time-consuming, and the possibility of missing

necessary requirement is high. Therefore, computer-aided prioritizing requirements is required, as it

can help the software engineer to proficiently detect the rank of each requirement (Achimugu et al.,

2014; Shao et al., 2017). Machine learning is becoming more popular as it assists in providing an

automatic solution in the area of requirements prioritization. The focus of this research is to provide

efficient automated parallel requirements prioritization approach(APRP) with high performance. This

work is an extension of our previous study (Fadlallah et al., 2024), and therefore extends this previously

completed work by providing an experimental evaluation for priority determination and parallel

ranking these requirements to provide more appropriate and usable systems through providing

graphical user interface (GUI).

Several machine learning techniques for RP have been presented in the literature such as (Shao et al.,

2017; Gupta & Gupta., 2018; Chua et al., 2022). Any technique uses one or many criteria in prioritizing

requirements. However, all techniques have limitations, not only associated with scalability and

requirements dependencies (Achimugu et al., 2014; Shao et al., 2017), but they consider mostly the

sequential prioritization format. Also due to ignorance on the impact of the requirements prioritization

on reducing software implementation time. According to (Fadlallah et al., 2024) there is no work

focused on the impact on requirements prioritization on the software implementation time.

Our proposed approach reduces the software implementation time, due to the awareness of parallel

ranking process in RP. It concerns the determining and categorizing the requirements priority levels

into in parallel format which permit the batch implementation using Random Forest classifier based

MoSCoW method. We apply our approach to the Testcase MIS system with priority dataset.

We develop a machine learning approach integrated with MoSCoW Method, that determine the

requirements priority level in parallel format from an input Testcase MIS system with priority dataset

after putting the values in an appropriate pattern, then removes null values and applies rules to

determine the parallel priority level.

Our study aims to develop a machine learning approach relied on the software requirements document

to determine the proper priority level by determining the MoSCoW categories (Must, Should, Could,

and Wouldn’t) as priority levels (High, Medium, and low) in parallel format. Parallel format, which

reduce the implementation time through simultaneous requirements implementation. The total

implementation time we achieved were equal to 33 seconds in parallel ranking formant; whereas The

total implementation time were equal to 76.0 seconds when ranking in sequential format. We achieved

a maximum measure of 94.87%, 92.31%, and 92.31% of average accuracy, precision and recall,

respectively.

https://doi.org/10.70274/jaict.2025.2.1

3 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

2. Related Works

Machine learning techniques have been deeply used to develop requirements prioritization approaches

(Qayyum, & Qureshi, 2018; Jan et al., 2020; Bukhsh et al., 2020). These approaches were believed very

effective due to the automation and tools supporting their implementation. Machine learning and data

mining algorithms has the capability to automation, resolve the

conflicts between the stakeholders and developers (Hujainah et al., 2018; Sher et al., 2020), etc., high

level of handling the scalability problem (Hudaib et al., 2018; Hujainah et al., 2018; Sher et al., 2020;

Amelia& Mohamed 2022). We reviewed and documented the previous research in this field in

(Fadlallah, & Eldow, 2024). Few existing semi-automated and full-automated approaches and models

for requirements prioritization are being studied in this section.

(Shao et al., 2017) developed a semi-automatic requirements prioritization approach, called DRank.

DRank takes the dependencies among requirements and the stakeholders’ preferences into

consideration. DRank employs RankBoost algorithm to produce requirement prioritization formula in

subjective manner. DRank producing requirement dependency graphs (RDGs) based on the

contribution dependencies and business dependencies among the requirements, next analyze the

contribution order to compute the contribution of each requirement by adopting PageRank algorithm

to finally assimilate the final requirements prioritization. A controlled experiment made to validate the

DRank efficiency constructed on comparisons with Case Based Ranking, AHP, and EVOLVE. The

results provided more effectiveness as compared with alternative approaches. However, this work

seems to provide only the contribution and business dependencies. Further, the authors highlight that

their approach is still motivated to the issue of subjectivity especially in the process of requirements

evaluation.

(Gupta & Gupta., 2018) proposed a semi-automated dependency based collaborative requirement

prioritization approach termed (CDBR), which uses an execute-before-after (EBA) connection among

requirements, linguistic values, and a machine learning algorithm to reduce inconsistencies in views

among stakeholder and developer and improve final priority estimation. The CDBR focused on three

major problems which are usually overlooked in an existing research: dependencies between

requirements, stakeholder and developer’s collaboration and scalability. To obtain final agreeable

implementation priorities, CDBR uses the Particle Swarm Optimization (PSO) algorithm to lessen

disputes among stakeholders and developers’ ranking. To evaluate the approach’s performance tow

scenario are chosen: in the first one, nine different requirement sets are applied to evaluate the

suggested approach’s performance in terms of managing scalability. stakeholders and developer’s

priority for all these requirements is determined randomly. The developer’s priority is computed using

a dependency matrix that is similarly created randomly while keeping the density of the matrix in

mind. The higher the density, the further dependencies there are in the system, and hence the more

complex it is. In the second scenario, validation on the case study of cargo booking management in a

warehouse (CBMW) is chosen, the CDBR, interactive genetic algorithm (IGA), and Analytic hierarchy

process (AHP) are used. The precision of the results is identified by comparing the CDBR against AHP

and IGA priority lists using the Analysis of Variance (ANOVA) test method. The outcomes are accurate

and equivalent in terms of scalability, accuracy, and stakeholder and developer variances levels. In

terms of efficiency and processing time, CDBR beats AHP and IGA. Despite an improvements detected

in prioritization results, and processing time together. However, it ignores the errors (false positive

rate) implicated during the prioritization process and the absent of supporting tool is also seen.

)Hujainah et al., 2021) proposed a new semi-automated scalable prioritization model named,

SRPTackle, and automation implementation tool (SRPTackle-Tool). SRPTackle consists of four steps:1)

specification of stakeholder priority value (SPV) for each stakeholder. 2) preparation requirement

priority value (RPV) for each requirement utilizing weighted sum model (WSM); 3) produce prioritised

list of requirements using K-means and K-means++ algorithms. 4) implement the binary search tree

(BST) algorithm SRPTackle developed to handle the main challenges of the prioritization process such

as scalability, time consumption, restricted dependence on expert participation, and lack of automation.

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 4

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

The efficiency of SRPTackle is measured through established seven experiments using the RALIC

benchmark dataset of a large actual software project. Experiment outcomes expose that SRPTackle able

to get 93.0% and 94.65% as least and high accuracy percentages, respectively. The outcomes also

highlight the ability of SRPTackle to prioritize large-scale requirements with minimum computation

time, and its increase efficiency when compared with other techniques. However, the dependency

between requirements is negated.

(Chua et al., 2022) introduced semi-automated framework for requirements prioritization named

(SARiP), which aimed to automate the activities in software requirements prioritization (SRP) process.

The proposed SARiP emphases on the parts related to prediction of requirements priority group and

ranks requirements using classification tree and ranking algorithm. The SARiP framework initiate with

data pre-processing and analysis of elicited data. Then a requirements list will be supplied.

Consequently, the requirements list will be prioritized using the SARiP framework. The

implementation of SARiP framework contains two prioritization phases manual and automatic. In the

manual phase, the requirements prioritized manually by the project team and stakeholders The manual

process using MoSCoW technique, numerical assignment technique and Kano model. The output of

the manual phase represents an initial prioritization list, which used as an input for automatic

prioritization. The automatic phase ranks the requirements using classification tree and ranking

algorithm. Finally, the SARiP framework has been well evaluated in the government sector as case

study. However, the authors state that the SARiP does not store the requirements prioritization results

in the database. Additionally, the traceability to trace the requirements changes not considered. Further,

it has limitations regarding the subjective use of ordinal scales and rankings, and it ignore the

dependency among requirements.

(Devadas & Cholli., 2022) presented a novel method called the Interdependency-aware Qubit and

BrownRoost Rank (IQ-BR) method to prioritize the large set of requirements and interdependency

among them. IQ-BR begin with the selected functional and non-functional requirements that are

required to be prioritized, using the Interdependencyaware Qubit requirement selection model. Each

customer (or stakeholder) offers a score for each requirement and a rank is made established on the

weighting of that customer. Interdependencies are acquired using the Eels function. Finally, the

BrownBoost Rank prioritization learning model is then adopted to rank the selected requirements.

Fairly good result had been achieved in precisely prioritizing requirements and reducing the noise in a

large set requirement prioritization. Performance analysis comparing IQ-BR, Intuitionistic Fuzzy

Approach (IFS) and Dependency Based Collaborative Requirement (CDBR) and establish that the result

for IQ-BR outperform CDBR, and IFS in term of accuracy which was detected to be at between 93.15%

and 95%, 90%, and 91.66% respectively. However, it fails to address uncertainty and test suite execution

issue among different stakeholders for large scale software requirements prioritization and the absent

of supporting tool is also seen.

We developed a classification approach concerning the parallel ranking in prioritization, which permit

the simultaneous requirements implementation that reducing the implementation time. We aim to gain

high rate of reducing the implementation time, high level of accuracy and other factors represented in

determining priority level (high, Medium, and low), such as scalability, automation and ease of use.

3. Proposed approach

The proposed automated prioritization approach consists of two main modules, data elicitation and

pre-processing module and prioritization module, which include established weight assignment,

MoSCoW prioritization, MoSCoW parallel prioritization, classifier methods.

Our approach begins with first module, data elicitation and preprocessing, followed by prioritization

module, which contains established priority assignment by the stakeholders and developer for each

requirement. Followed by applying the MoSCoW method and MoSCoW parallel prioritization; Finally,

we will apply a classification technique called Random Forest classifier based MoSCoW method.

https://doi.org/10.70274/jaict.2025.2.1

5 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Figure 1 shows a general diagram of the constructed approach. The work concerning each part is

explained in detail in the following sections.

Requirements Set

Figure 1. A general diagram of the prioritization approach.

3.1Elcitation and Pre-processing module

This module begins with data gaining and pre-processing, followed by requirements analysis. When

both stages are completed, a requirements set will be issued. This stage involves removing the noisy

Automated RP approach

Data elicitation, Pre- processing

and Requirements analysis
Established priority assignment by

stakeholders and developers

MoSCoW- based Prioritization (M, S,C.W)

MoSCoW Method combined with Random

Forest classifier

 Parallel prioritization list

Evaluation

MoSCoW Parallel Prioritization

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 6

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

data of the requirements features, handling the missing values of the requirements features in order to

attain optimal classification results. Requirements analysis is conducted to ensure that the produced

requirements shall be atomic, uniquely identified, complete, consistent and unambiguous.

Requirements analysis step is significant to guarantee all the requirements are clear, clean and ready

for the prioritization process. This module also contains dependency analysis, and criteria assignment.

3.2 Prioritization module

In this research, we developed a machine learning approach based on an integration of the MoSCoW

method and Random Forest classifier for automated parallel requirement prioritization(APRP). The

proposed approach improves and enhances the existing approaches in order to overcome the

limitations of existing approaches. The prioritization module comprises: Established priority

assignment by the stakeholders and developer, MoSCoW prioritization, MoSCoW parallel

prioritization .and classification technique. We applied our approach to (Testcase MIS system with

priority) industrial dataset.

3.2.1 Established priority assignment by the stakeholders and developer

Stakeholders indicate ones who will describe the look of organization and will document the

requirements (Gupta & Gupta., 2018). Stakeholders’ emphasis customer satisfaction in term of urgency,

needs, and business values (Keertipati et al., 2016; Gupta & Gupta., 2018; Gambo et al., 2021); Whereas

developer denotes engineers who develop or maintain related systems (Ahmad et al., 2022).

Developers are concerned with project features such as effort and cost (Keertipati et al., 2016; (Devadas

& Cholli., 2022). Stakeholders and developer’s collaboration has become an essential tool assists in

bridging the gap of understanding and allocating a weight for each prioritization criteria. Therefore,

stakeholders and developer’s asked to pick a weight for various prioritization criteria such as MoSCoW,

time, cost, complexity, and importance. Stakeholders and developer’s collaboration in RP lead to

success software system, since it minimizes the difference of view between stakeholder and developers

for better estimation of priority acceptable to both. Hence, a refined priority weight for each

requirement can be obtained. The proposed prioritization criteria and their description are represented

in Table 1. The total weight will select by stakeholders for all requirements criteria will be 100 percent.

Table 2 shows an example of criteria weight for the proposed requirements prioritization approach.

Table 1: Prioritization criteria and their description

Criteria

Description

MoSCoW Measure the impact of requirements using MoSCoW Method

Cost Measure the cost required in developing the application

Time Measure the time required to develop application

Complexity Measure the requirements complexity

Importance Measure the importance of requirements.

 Table 2: Example of criteria weight for requirements prioritization

Criteria Weight %

MoSCoW 10%

Cost 15%

Time 20%

Complexity 25%

Importance 30%

Total 100%

https://doi.org/10.70274/jaict.2025.2.1

7 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Developers implement matrix based on dependence graph to represent dependency among

requirements. The stakeholders and developer’s initial priority are considered as ‘‘perfect” preferences.

These preferences will use as guide for estimation in MoSCoW ranking.

3.2.2 MoSCoW based Prioritization

Within the stakeholder and developer’s initial ranking in mind, MoSCoW method will progress to

identify and classify the requirements accordingly. Moscow characterises a guideline to confirm the

basic importance of the requirements. The key stakeholders distribute the requirements into four

categories (Must, Should, Could and Wouldn’t) and three level (High, Medium, and Low) by applying

MoSCoW method. MoSCOW categories represented in Table 3.

Table 3: Rating criteria for MoSCoW Method categories

MoSCoW

category

Meaning

Must-Have (M) Identify the requirements that are absolutely critical for the success of project.

Should-Have (S) List the requirements that are important but not as critical as the Must-Have

items.

Could-Have (C) Include requirements that are desirable but not essential for the project's

immediate success.

Won't-Have (W) This category includes requirements that are explicitly excluded from the current

project scope.

 The rating method for MoSCoW method is depending on the criteria (e.g: 1 - the maximum important

priority, 4 - the minimum important priority) indicated in Table 4.

Table 4: Rating criteria for MoSCoW Method

Criteria Rate

Must 1

Should 2

Could 3

Won’t 4

The stakeholders and developers will then use numerical assignment techniques to score the rating for

further prioritization criteria as defined in (Chua et al., 2022), table 4 shows rating criteria. The rating

method for these criteria is based on the criteria in table 5 with the scale of 1 to 10 (e.g: 1 - the fewer

important priority, 10 - the greatly important priority). The rating method for importance criteria is

based on the criteria (e.g:3 - the very important priority, 1 - the less important priority) (Chua et al.,

2022), in Table 6.

Table 5.: Rating criteria for cost, time, and complexity

Criteria Rating

Cost 1-10

Time 1-10

Complexity 1-10

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 8

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Table 6: Rating criteria for importance

Criteria Rating

High 3

Medium 2

Low 1

The prioritization part will begin with computing the rate based on the initial set of prioritized

requirements by the stakeholders and developers. The weight criteria and rating method recognized

previously will be used in computing the rate for requirements prioritization. The formula for

computing each criteria of the requirement are defined as equations defined in (Chua et al., 2022) (1),

(2), (3), (4), and (5).

𝑀𝑜𝑆𝐶𝑜𝑊 → 𝑠𝑐𝑜𝑟𝑒/ 4 ∗ 𝑚𝑜𝑠𝑐𝑜𝑤_𝑤𝑒𝑖𝑔ℎ𝑡 (1)

𝐶𝑜𝑠𝑡 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑐𝑜𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡 (2)

𝑇𝑖𝑚𝑒 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑡𝑖𝑚𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 (3)

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑤𝑒𝑖𝑔ℎ𝑡 (4)

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 → 𝑠𝑐𝑜𝑟𝑒 / 3 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 (5)

The total rates for requirements criteria will be computed using equation (6) when the criteria of each

requirement are calculated.

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 → 𝑀𝑜𝑆𝐶𝑜𝑊 + 𝐶𝑜𝑠𝑡 + 𝑇𝑖𝑚𝑒 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (6)

3.2.3 MoSCoW Parallel Prioritization

Parallel prioritization concepts implemented when the requirements in the same MoSCoW category

and the same priority level with no dependencies. Therefore, it could be implemented simultaneously

to reduce the implementation time, which may contribute in accelerating the other higher level in

software development. Then calculate implementation time: To confirm the hypothesis of simultaneous

implementation of the requirements in parallel format could reduce the implementation time, the

approach must calculate implementation time using mathematical equations.

To calculate the implementation time, the time must be estimated for every requirement. The estimated

time allocated for each requirement in each category (Must Have, Should Have, Could Have and

Wouldn’t), based on required resources like complexity and cost. Then the (star_ time and finish_ time)

must be estimated for each MoSCoW category as following:

In Must category(M) the star_ time==0, finsh_time ==finsh_time_m

In Should category(S) the star_ time== finsh_time_m, finsh_time== finsh_time_s

In Could category(C) the star_ time== finsh_time_s, finsh_time== finsh_time_C.

The Wouldn’t category could be dropped. Calculate the total time for each Category through making

summation of the estimated times for all requirements in each category (Must Have, Should Have,

Could Have). The requirements within the same MoSCoW category and with the same priority levels

when no dependencies can be considered for simultaneous implementation to reduce the

implementation time.

3.2.4 A classification technique using Random Forest-based MoSCoW Method (RF-MM)

Using Random Forest-based on MoSCoW Method and (RF-MM) to improve the performance of

MoSCoW method in the RP level determination and classification. In addition, MoSCoW method

allows flexibility by categorizing requirements into different priority levels, making it easier to manage

scope and resources. Random Forest can capture complex relationships between requirements and

https://doi.org/10.70274/jaict.2025.2.1

9 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

prioritize them based on historical patterns. The integrated method was initiated by using 8 features

given as input to MoSCoW Method and the output weight of MoSCoW optimized by Random Forest

classifier. The classification process utilizes machine learning techniques in generating the priority

levels and final priority ranks of requirements which contains two parts, prioritization and prediction.

Specifically, Random Forest classifier -based MoSCoW Method (RF-MM) is used. The purpose of this

classification approach is to predict the priority levels. The second part of the proposed RF-MM

approach automatic prioritization is prediction of requirements priority level. The final priority rank

will be calculated as a result represented as output of Random Forest-based MoSCoW Method (RF-

MM). It uses these MoSCoW ranking for estimate of its final output concluded series of iterations.

Classification done using and 70% split (i.e. 70% training, 30% testing). The training data consists of

70% of the original data (current requirements) and the other 30% of the data (new requirements) will

be used as testing data.

3.3 Implementation: (The proposed Automated Parallel Requirements Proposed Approach) (APRP)

Our proposed approach contains two techniques the first one concerned with dividing the

requirements into four categories according to MoSCoW method namely Must have, should have,

could have and Wouldn’t have. The second techniques use the output of the first techniques to

determine the final priority of the requirements in the document in parallel format.

Our proposed approach uses the output of the MoSCoW parallel prioritization as input to determine

the final priority of the requirements in the document in parallel format. There are several tow steps

Training, Testing and Prediction illustrated as following:

Training: Train a Random Forest classifier using the Testcase MIS system with priority dataset, where

the input features are the attributes of requirements, and the target variable is the priority level (High,

Medium, and Low) according to MoSCoW method category and the implementation time estimation.

We built these classifiers using the Scikit-Learn library, a well-established machine learning package

for Python. Scikit-Learn offers numerous utility functions for data preprocessing, validation, and metric

computations. The goal of our study is to achieve the best combination of the MoSCoW method and

the Random Forest classifier as supervised learning techniques for prioritizing and classifying software

requirements, with an added focus on estimating implementation time. The algorithm for our approach

is shown in Figure 2.

Testing and Prediction: Once our approach is trained and evaluated, I can use it to predict the priority

levels of new requirements based on their attributes.

Classification Approach Algorithm

Input: the data list gained from our MoSCoW parallel prioritization

Output: Pattern as values

Input prioritization criteria values (Cost, Time, Complexity and Importance).

Find pattern as values using Regular Expressions Array

If Importance is 1 Then

Req in Must MoSCoW_category == 'M'

if priority == 'High':

m_h.allocted(req) in array

elif priority == 'Medium':

m_m. allocted(req) in array

elif priority == 'Low':

m_l. allocted(req) in array

Else IF Importance is 2 Then

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 10

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Req in Should MoSCoW_category == 'S'

if priority == 'High':

 s_h. allocted(req) in array

elif priority == 'Medium':

 s_m. allocted(req) in array

elif priority == 'Low':

s_l.allocted(req) in array

Else IF Importance is 3 Then

Req in Could MoSCoW_category == 'C'

if priority == 'High':

c_h. allocted(req) in array

elif priority == 'Medium':

c_m. allocted(req) in array

elif priority == 'Low':

c_l. allocted(req) in array

Else IF Importance is 4 Then

if priority == 'High':

w_h. allocted(req) in array

elif priority == 'Medium':

w_m. allocted(req) in array

elif priority == 'Low':

w_l. allocted(req) in array

calculate the total implementation time for requirements within each MoSCoW category considering

dependencies

Drop Wouldn’t category

for each MoSCoW category (M, S, C):

if No of Req in the same MoSCoW class with the same priority level & No dependency among them:

Rank them in parallel format.

END.

Figure 2. Classification approach algorithm

3.4 Approach Evaluation

To approve the hypothesis that ranking requirements in parallel format can reduce implementation

time, the approach calculates this time using mathematical equations. We computed the total

implementation time for the "Must," "Should," and "Could" categories according to the MoSCoW

method and compared the results. Figures 3 and 4 illustrates these findings.

https://doi.org/10.70274/jaict.2025.2.1

11 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

total Moscow: 218.75

total cost: 2392.95

total time: 115.15

total complexity: 102.5

total importance: 291.66

Time: 33.0

Figure 3. parallel ranking implementation

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 12

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

total Moscow: 218.75

total cost: 2392.95

total time: 115.15

total complexity: 102.5

total importance: 291.66

Time: 76.0

Figure 4. Sequential ranking implementation

To evaluate the performance of the classification and priority determination algorithm, you should

know two essential terms in any measurements, Accuracy (Acc), and Precision (P). They have a

distinct meaning, as we will discuss in the subsequence lines. For our algorithm, accuracy had been

calculated in expressions of positives and negatives as follows:

Accuracy= (TP+TN) / (TP+TN+FP+FN)

Where, TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives table

7 signify the confusion matrix

https://doi.org/10.70274/jaict.2025.2.1

13 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Calculating accuracy for the classification algorithm that classified requirement priority as correctly

predicted requirements priority (the positive class) or falsely predicted requirements priority (the

negative class):

Table 7: Confusion matrix

True Positives(TP) False Positives(FP)

Reality: correctly determines the requirement

priority level

ML algorithm predicted: right priority.

Number of TP result: 36

Reality: correctly determines the requirement

priority level

ML model predicted: the wrong priority.

Number of FP result: 3

False Negative (FN) True Negative(TN)

Reality: imprecisely determine the requirement

priority level

ML algorithm predicted: incorrectly

recognized wrong priority.

Number of FN result: 3

Reality: imprecisely determine the requirement

priority level

ML model predicted: correctly recognized

wrong priority.

Number of TN result: 75

Accuracy= (TP+TN)/ (TP+TN+FP+FN) = (36+75)/ (36+75+3+3) =94.87%

Accuracy comes out to 0.9487, or 94.87%. That indicates our algorithm is doing a great job of

determining the requirements priority level.

Precision(P): Is the ratio of the number of related instances retrieved to the total number of unrelated

and related records retrieved (Sarhan et al., 2016). It seems to be the vital metric of our algorithm as it

determines the requirements for specific release.

P =
TP

(TP + FP)
× 100

P =
36

(36+3)
× 10

 =0.92307

= 92.31

Recall (R) (Sarhan et al., 2016) also known as Sensitivity: Is the ratio of the number of related instances

retrieved to the total number of existing relevant instances, defined as:

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100

𝑃 =
36

(36+3)
× 100

=0.92307

= 92.31

Accuracy (A): Is the fraction of true results against the total number of cases evaluated, defined as:

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
× 100

Where TP: the number of true positives, FN: the number of false negatives, TN: the number of true negatives,

FP: the number of false positives.

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 14

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

𝐴𝐶𝐶 =
36 + 75

(36 + 75 + 3 + 3)
× 100

= 94.87

Accuracy comes out to 94.87%. That means our algorithm is doing a great job of determining the

requirements priority level from SRP document.

We achieved a maximum measure of 94.87%, 92.31%, and 92.31% of average accuracy, precision, and

recall, respectively, as represented in figure 5.

Figure 5. The performance metrics

The ease of use requires an interface for interaction between the approach and users, Thus, the

Graphical User Interface (GUI) of the APRP approach main page is designed as denoted in Figure 6.

APRP approach is able to handle different datasets as long as cleaning the dataset. An Example of

requirements parallel prioritization result is presented in Figure 7.

https://doi.org/10.70274/jaict.2025.2.1

15 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Figure 6. Graphical User Interface (GUI) of APRP approach

Figure 7. Example of requirements parallel prioritization result

4. Results Discussion

Experiments on automated requirements priority detection were conducted using the Testcase MIS

system with a priority dataset. We trained the requirements prioritization approach on 1,314

requirements within this dataset and observed a promising reduction in implementation time.

Specifically, parallel ranking reduced implementation time to 33 seconds, compared to 76 seconds in a

https://doi.org/10.70274/jaict.2025.2.1

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 16

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

sequential setup. This demonstrates that parallel ranking can cut implementation time by more than

half, proving its effectiveness in optimizing requirements prioritization. When we evaluate the

performance in classification and priority level determination, it achieved a maximum measure of

94.87%, 92.31%, and 92.31% of average accuracy, precision and recall, respectively.

A strength of our approach is that unlike many other prioritization methods, as it beats CDBR, SARiP,

and IQ-BR in term of concern the impact of priority ranking on software development cycles, accuracy,

ease of use, as well as its ability of handling projects with massive number of requirements. Further,

our approach introduces the parallel ranking concept in RP, which lead to reducing implementation

time to more than have along with high level of accuracy.

Table 7: Study Comparisons

Factor CDBR(2018) SARiP (2022) IQ-BR(2022) Proposed Approach

APRP (2024)

Automation Semi-automated Semi-automated Full-automated Full-automated

Prioritization

criteria

Stakeholders

and developer’s

Communication,

Dependency.

Scalability, and

Importance

Stakeholders

prioritization,

Cost, Time,

Complexity,

Risk, and

Importance

Customer

prioritization,

Dependency

Accuracy,

Prioritization time.

Stakeholders and

developer’s criteria,

Dependency, Cost, Time,

Complexity, Importance,

and Scalability

No of input

Requirements

100 Not estimated 60 >149

Scalability Considered Not Considered Considered Considered

Parallel RP - - - Considered

Awareness

with the effect

of RP on

software

developments

cycle

- - - Considered

Implementation

time

- - - Considered

Accuracy 90% Not estimated 93.15 94.87

5.Conclusion

In this paper, we designed a machine learning approach integrated with MoSCoW method, capable of

determining requirement priority levels in a parallel format, significantly reducing implementation

time. When measuring this reduction, we found that sequential ranking required 76 seconds, while

parallel ranking reduced this to 33 seconds. This demonstrates that parallel ranking can cut

implementation time by more than half. The approach was applied to a Testcase MIS system with a

priority dataset, providing valuable insights into the impact of priority ranking on software

development cycles. By applying the classification, we achieved a maximum measure of 94.87%,

92.31%, and 92.31% of average accuracy, precision and recall, respectively.

Based on our outcomes, ML within RP promising to address present challenges and uncover new

opportunities for improvement. Further, this research sets the stage for future enhancements in the field

RP based computational intelligence. Future work will improve the approach performance by storing

the requirements and prioritization results in a database in order to evaluate the approach effectiveness

and refine it over time.

https://doi.org/10.70274/jaict.2025.2.1

17 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

6. Acknowledgment

This work was supported by the Deanship of Scientific Research and the Deanship of Faulty of

Computer Science &Information Technology at Omdurman Islamic University, Omdurman, Sudan.

Funding:

 “This research received no external funding”

References

Aurum, A. (2005). Engineering and managing software requirements (Vol. 1). C. Wohlin (Ed.).

Heidelberg: Springer.

Lunarejo, M. I. L. (2021, September). Requirements prioritization based on multiple criteria using

Artificial Intelligence techniques. In 2021 IEEE 29th International Requirements Engineering

Conference (RE) (pp. 480-485). IEEE.

Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. N. R. (2014). A systematic literature review of

software requirements prioritization research. Information and software technology, 56(6),

568-585.IEEE.

Shao, F., Peng, R., Lai, H., & Wang, B. (2017). DRank: A semi-automated requirements prioritization

method based on preferences and dependencies. Journal of Systems and Software, 126,141-156.

Fadlallah, KIA., Sharif, M. M., & Eldow, M. E. Y. (2024). Developing Parallel Requirements

Prioritization Machine Learning Model Integrating with MoSCoW Method, Journal of Artificial

Intelligence and Computational Technology, 1(1).

Fadlallah, K. I. A., & Eldow, M. E. Y. (2024). Machine learning: A survey of requirements prioritization:

A review study. Journal of Artificial Intelligence and Computational Technology, 1(1).

Gupta, A., & Gupta, C. (2018). CDBR: A semi-automated collaborative execute-before-after

dependency-based requirement prioritization approach. Journal of King Saud University-

Computer and Information Sciences, 34(2), 421-432.

Chua, F. F., Lim, T. Y., Tajuddin, B., & Yanuarifiani, A. P. (2022). Incorporating semi-automated

approach for effective software requirements prioritization: A framework design. Journal of

Informatics anAd Web Engineering, 1(1), 1-15.

Qayyum, S., & Qureshi, A (2018, November). A survey on machine learning based requirement

prioritization techniques. In Proceedings of the 2018 International Conference on

Computational Intelligent Systems (pp. 51-55).

Jan, N., Inayat I., and Abbas, M. (2020). An Empirical Evaluation of Requirements Prioritization

Techniques. Marketing and Branding Research,7 (1), 11.

Bukhsh, F. A., Bukhsh, Z. A., & Daneva, M. (2020). A systematic literature review on requirement

prioritization techniques and their empirical evaluation. Computer Standards & Interfaces, 69,

103389.

Hujainah, F., Bakar, R.B.A., Al-haimi, B.& Abdulgabber,M.A.(2018). Stakeholder quantification and

prioritisation research: A systematic literature review.Information and Software Technology

,102, 85–99, https://doi.org/10.1016/j.infsof.2018.05. 008.
Sher, F., Jawawi, D. N., Mohammad, R., Babar, M. I., Kazmi, R., & Shah, M. A. (2020). Multiaspects Intelligent

Requirements Prioritization Technique for Value Based Software Systems. In Intelligent Technologies

and Applications: Second International Conference, INTAP 2019.

Amelia, T., & Mohamed, R. (2022). A Review: Requirements Prioritization Criteria Within

Collaboration Perspective. Journal homepage: http://www.pertanika.upm.edu.my/.

https://doi.org/10.70274/jaict.2025.2.1
https://doi.org/10.1016/j.infsof.2018.05.%20008
http://www.pertanika.upm.edu.my/

Fadlallah, Machine Learning Approach Integrated with MoSCoW Method for Parallel Requirements Prioritization | 18

DOI: https://doi.org/10.70274/jaict.2025.2.1.

p- ISSN 34562-3478 e- ISSN 5443-1243

Hujainah, F., Bakar, R. B. A., Nasser, A. B.Al-haimi, B., & Zamli, K. Z. (2021). SRPTackle: A semi-automated

requirements prioritization technique for scalable requirements of software system projects. Information

and Software Technology, 131, 106501.

Devadas, R., & Cholli, N. G. (2022). Interdependency Aware Qubit and Brownboost Rank Requirement Learning

for Large Scale Software Requirement Prioritization. International Journal of Computing and Digital

Systems, 11(1), 625-635.

Keertipati, S., Savarimuthu, B. T. R., &. Licorish. S. A. (2016, June). Approaches for prioritizing feature

improvements extracted from app reviews. In Proceedings of the 20 th international conference

on evaluation and assessment in software engineering (pp. 1-6).

Gambo, I. P., Ikono, R., Iroju, O. G., Omodunbi, T. O., & Zohoun, O. K. (2021). Hybridized ranking

model for prioritizing functional software requirements: Case study approach. International

Journal of Software Innovation (IJSI), 9(4), 19-49.

Ahmad, S., Rizawanti, R., Woodings, T., & Jalil, I. E. A. (2022). MCBRank Method to Improve Software

Requirements Prioritization. International Journal of Advanced Computer Science and

Applications, 13(7).
Sarhan ,I., El-Sonbaty ,Y., & Abou El-Nasr, M. (2016, November). Semi-Supervised Pattern-Based Algorithm

for Arabic Relation Extraction. In 2016 IEEE 28th International Conference on Tools with Artificial

Intelligence (ICTAI). (pp. 177-183). IEEE.

https://doi.org/10.70274/jaict.2025.2.1

