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 Requirements prioritization (RP) is one of the vital activities carried out 

through requirements engineering process.  Requirements prioritization 

includes the selection of requirements that are reflected more important 

from elicited list of stakeholders' requirements. Making an incorrect 

selection will not only reduction the quality of the developed software 

but it will also earn extra cost for refinement processes in later stages. 

Thus, requirements prioritization would aid to determine the most 

appropriate requirements in different software product releases. Many 

research focusing on prioritizing the requirements using one or several 

criteria like time, dependency, and scalability. However, most of these 

studies address sequential prioritization only. To the best of our 

knowledge, no research has explored parallel ranking in prioritization, 

which allows for simultaneous requirements implementation, thereby 

reducing implementation time. Furthermore, as the volume of 

requirements grows, scalability becomes a critical issue. Manual 

prioritization is time-consuming and increases the likelihood of 

overlooking essential. Machine learning is increasingly popular for 

automating requirements prioritization. In this study we developed 

automated parallel requirements prioritization approach (APRP) for 

determine the requirements priority level in parallel format using 

Random Forest classifier based MoSCoW method (RF-MM). The 

proposed approach consists of two main modules, data elicitation and 

pre-processing module and prioritization module, which include 

established weight assignment, MoSCoW parallel prioritization, and 

classifier methods. Experiments on the industrial dataset (Testcase MIS 

system with priority) revealed that the total implementation time for 

sequential ranking was 76.0 seconds, whereas it was reduced to 33.0 

seconds for parallel ranking. Thus, parallel ranking reduced 

implementation time by more than half. We achieved a maximum 

accuracy of 94.87%, precision of 92.31%, and recall of 92.31%. 
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1. Introduction 

Requirement prioritization (RP) is one of the vital activities carried out through requirements 

engineering process.  Requirement prioritization includes the selection of requirements that are 

reflected more important from a collected list of stakeholders' requirements. Making an incorrect 

selection will not only reduction the quality of the developed software but it will also earn extra cost 

for refinement processes in later stages. Thus, requirements prioritization would aid to determine the 

most appropriate requirements in different software product releases. 

 
The concept RP appeared with the increased requests of complex software systems by stakeholders 

(Aurum, 2005), and due to huge numbers of software requirements. Hence, the issue of scalability in 

prioritizing the requirements is become essential. Scalability denotes the capability to handle a large 

number of requirements i.e. more than 100 (Lunarejo, 1021). Accordingly, because the requirements 

amount is huge and manual prioritization is considered time-consuming, and the possibility of missing 

necessary requirement is high. Therefore, computer-aided prioritizing requirements is required, as it 

can help the software engineer to proficiently detect the rank of each requirement (Achimugu et al., 

2014; Shao et al., 2017). Machine learning is becoming more popular as it assists in providing an 

automatic solution in the area of requirements prioritization. The focus of this research is to provide 

efficient automated parallel requirements prioritization approach(APRP) with high performance. This 

work is an extension of our previous study (Fadlallah et al., 2024), and therefore extends this previously 

completed work by providing an experimental evaluation for priority determination and parallel 

ranking these requirements to provide more appropriate and usable systems through providing 

graphical user interface (GUI). 
  

Several machine learning techniques for RP have been presented in the literature such as (Shao et al., 

2017; Gupta & Gupta., 2018; Chua et al., 2022). Any technique uses one or many criteria in prioritizing 

requirements. However, all techniques have limitations, not only associated with scalability and 

requirements dependencies (Achimugu et al., 2014; Shao et al., 2017), but they consider mostly the 

sequential prioritization format. Also due to ignorance on the impact of the requirements prioritization 

on reducing software implementation time. According to (Fadlallah et al., 2024) there is no work 

focused on the impact on requirements prioritization on the software implementation time. 

 
Our proposed approach reduces the software implementation time, due to the awareness of parallel 

ranking process in RP. It concerns the determining and categorizing the requirements priority levels 

into in parallel format which permit the batch implementation using Random Forest classifier based 

MoSCoW method. We apply our approach to the Testcase MIS system with priority dataset. 

 

We develop a machine learning approach integrated with MoSCoW Method, that determine the 

requirements priority level in parallel format from an input Testcase MIS system with priority dataset 

after putting the values in an appropriate pattern, then removes null values and applies rules to 

determine the parallel priority level. 

 

Our study aims to develop a machine learning approach relied on the software requirements document 

to determine the proper priority level by determining the MoSCoW categories (Must, Should, Could, 

and Wouldn’t) as priority levels (High, Medium, and low) in parallel format. Parallel format, which 

reduce the implementation time through simultaneous requirements implementation. The total 

implementation time we achieved were equal to 33 seconds in parallel ranking formant; whereas The 

total implementation time were equal to 76.0 seconds when ranking in sequential format. We achieved 

a maximum measure of 94.87%, 92.31%, and 92.31% of average accuracy, precision and recall, 

respectively. 
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2. Related Works  

Machine learning techniques have been deeply used to develop requirements prioritization approaches 

(Qayyum, & Qureshi, 2018; Jan et al., 2020; Bukhsh et al., 2020). These approaches were believed very 

effective due to the automation and tools supporting their implementation. Machine learning and data 

mining algorithms has the capability to automation, resolve the 

conflicts between the stakeholders and developers (Hujainah et al., 2018; Sher et al., 2020), etc., high 

level of handling the scalability problem (Hudaib et al., 2018; Hujainah et al., 2018; Sher et al., 2020; 

Amelia& Mohamed 2022). We reviewed and documented the previous research in this field in 

(Fadlallah, & Eldow, 2024). Few existing semi-automated and full-automated approaches and models 

for requirements prioritization are being studied in this section. 
 

(Shao et al., 2017) developed a semi-automatic requirements prioritization approach, called DRank. 

DRank takes the dependencies among requirements and the stakeholders’ preferences into 

consideration. DRank employs RankBoost algorithm to produce requirement prioritization formula in 

subjective manner. DRank producing requirement dependency graphs (RDGs) based on the 

contribution dependencies and business dependencies among the requirements, next analyze the 

contribution order to compute the contribution of each requirement by adopting PageRank algorithm 

to finally assimilate the final requirements prioritization. A controlled experiment made to validate the 

DRank efficiency constructed on comparisons with Case Based Ranking, AHP, and EVOLVE. The 

results provided more effectiveness as compared with alternative approaches. However, this work 

seems to provide only the contribution and business dependencies. Further, the authors highlight that 

their approach is still motivated to the issue of subjectivity especially in the process of requirements 

evaluation. 

  

(Gupta & Gupta., 2018) proposed a semi-automated dependency based collaborative requirement 

prioritization approach termed (CDBR), which uses an execute-before-after (EBA) connection among 

requirements, linguistic values, and a machine learning algorithm to reduce inconsistencies in views 

among stakeholder and developer and improve final priority estimation. The CDBR focused on three 

major problems which are usually overlooked in an existing research: dependencies between 

requirements, stakeholder and developer’s collaboration and scalability. To obtain final agreeable 

implementation priorities, CDBR uses the Particle Swarm Optimization (PSO) algorithm to lessen 

disputes among stakeholders and developers’ ranking. To evaluate the approach’s performance tow 

scenario are chosen: in the first one, nine different requirement sets are applied to evaluate the 

suggested approach’s performance in terms of managing scalability. stakeholders and developer’s 

priority for all these requirements is determined randomly. The developer’s priority is computed using 

a dependency matrix that is similarly created randomly while keeping the density of the matrix in 

mind. The higher the density, the further dependencies there are in the system, and hence the more 

complex it is. In the second scenario, validation on the case study of cargo booking management in a 

warehouse (CBMW) is chosen, the CDBR, interactive genetic algorithm (IGA), and Analytic hierarchy 

process (AHP) are used. The precision of the results is identified by comparing the CDBR against AHP 

and IGA priority lists using the Analysis of Variance (ANOVA) test method. The outcomes are accurate 

and equivalent in terms of scalability, accuracy, and stakeholder and developer variances levels. In 

terms of efficiency and processing time, CDBR beats AHP and IGA. Despite an improvements detected 

in prioritization results, and processing time together. However, it ignores the errors (false positive 

rate) implicated during the prioritization process and the absent of supporting tool is also seen.  
 

)Hujainah et al., 2021) proposed a new semi-automated scalable prioritization model named, 

SRPTackle, and automation implementation tool (SRPTackle-Tool). SRPTackle consists of four steps:1) 

specification of stakeholder priority value (SPV) for each stakeholder. 2) preparation requirement 

priority value (RPV) for each requirement utilizing weighted sum model (WSM); 3) produce prioritised 

list of requirements using K-means and K-means++ algorithms. 4) implement the binary search tree 

(BST) algorithm SRPTackle developed to handle the main challenges of the prioritization process such 

as scalability, time consumption, restricted dependence on expert participation, and lack of automation. 

https://doi.org/10.70274/jaict.2025.2.1
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The efficiency of SRPTackle is measured through established seven experiments using the RALIC 

benchmark dataset of a large actual software project. Experiment outcomes expose that SRPTackle able 

to get 93.0% and 94.65% as least and high accuracy percentages, respectively. The outcomes also 

highlight the ability of SRPTackle to prioritize large-scale requirements with minimum computation 

time, and its increase efficiency when compared with other techniques. However, the dependency 

between requirements is negated.  

 

(Chua et al., 2022) introduced semi-automated framework for requirements prioritization named 

(SARiP), which aimed to automate the activities in software requirements prioritization (SRP) process. 

The proposed SARiP emphases on the parts related to prediction of requirements priority group and 

ranks requirements using classification tree and ranking algorithm. The SARiP framework initiate with 

data pre-processing and analysis of elicited data. Then a requirements list will be supplied. 

Consequently, the requirements list will be prioritized using the SARiP framework. The 

implementation of SARiP framework contains two prioritization phases manual and automatic. In the 

manual phase, the requirements prioritized manually by the project team and stakeholders The manual 

process using MoSCoW technique, numerical assignment technique and Kano model. The output of 

the manual phase represents an initial prioritization list, which used as an input for automatic 

prioritization. The automatic phase ranks the requirements using classification tree and ranking 

algorithm. Finally, the SARiP framework has been well evaluated in the government sector as case 

study. However, the authors state that the SARiP does not store the requirements prioritization results 

in the database. Additionally, the traceability to trace the requirements changes not considered. Further, 

it has limitations regarding the subjective use of ordinal scales and rankings, and it ignore the 

dependency among requirements. 

 

(Devadas & Cholli., 2022) presented a novel method called the Interdependency-aware Qubit and 

BrownRoost Rank (IQ-BR) method to prioritize the large set of requirements and interdependency 

among them. IQ-BR begin with the selected functional and non-functional requirements that are 

required to be prioritized, using the Interdependencyaware Qubit requirement selection model. Each 

customer (or stakeholder) offers a score for each requirement and a rank is made established on the 

weighting of that customer. Interdependencies are acquired using the Eels function. Finally, the 

BrownBoost Rank prioritization learning model is then adopted to rank the selected requirements. 

Fairly good result had been achieved in precisely prioritizing requirements and reducing the noise in a 

large set requirement prioritization. Performance analysis comparing IQ-BR, Intuitionistic Fuzzy 

Approach (IFS) and Dependency Based Collaborative Requirement (CDBR) and establish that the result 

for IQ-BR outperform CDBR, and IFS in term of accuracy which was detected to be at between 93.15% 

and 95%, 90%, and 91.66% respectively. However, it fails to address uncertainty and test suite execution 

issue among different stakeholders for large scale software requirements prioritization and the absent 

of supporting tool is also seen.  
 

We developed a classification approach concerning the parallel ranking in prioritization, which permit 

the simultaneous requirements implementation that reducing the implementation time. We aim to gain 

high rate of reducing the implementation time, high level of accuracy and other factors represented in 

determining priority level (high, Medium, and low), such as scalability, automation and ease of use. 

  

3. Proposed approach 

 

The proposed automated prioritization approach consists of two main modules, data elicitation and 

pre-processing module and prioritization module, which include established weight assignment, 

MoSCoW prioritization, MoSCoW parallel prioritization, classifier methods.  

Our approach begins with first module, data elicitation and preprocessing, followed by prioritization 

module, which contains established priority assignment by the stakeholders and developer for each 

requirement. Followed by applying the MoSCoW method and MoSCoW parallel prioritization; Finally, 

we will apply a classification technique called Random Forest classifier based MoSCoW method.   

https://doi.org/10.70274/jaict.2025.2.1
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Figure 1 shows a general diagram of the constructed approach. The work concerning each part is 

explained in detail in the following sections. 
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Figure 1. A general diagram of the prioritization approach. 

 

3.1Elcitation and Pre-processing module  

This module begins with data gaining and pre-processing, followed by requirements analysis. When 

both stages are completed, a requirements set will be issued. This stage involves removing the noisy 

Automated RP approach 

Data elicitation, Pre- processing 

and Requirements analysis  
Established priority assignment by                 

stakeholders and developers 

MoSCoW- based Prioritization (M, S,C.W)         

 

MoSCoW Method combined with Random        

Forest classifier 

 

 Parallel prioritization list 

Evaluation 

MoSCoW Parallel Prioritization                
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data of the requirements features, handling the missing values of the requirements features in order to 

attain optimal classification results. Requirements analysis is conducted to ensure that the produced 

requirements shall be atomic, uniquely identified, complete, consistent and unambiguous. 

Requirements analysis step is significant to guarantee all the requirements are clear, clean and ready 

for the prioritization process. This module also contains dependency analysis, and criteria assignment.  

 

3.2 Prioritization module  

In this research, we developed a machine learning approach based on an integration of the MoSCoW 

method and Random Forest classifier for automated parallel requirement prioritization(APRP). The 

proposed approach improves and enhances the existing approaches in order to overcome the 

limitations of existing approaches.  The prioritization module comprises: Established priority 

assignment by the stakeholders and developer, MoSCoW prioritization, MoSCoW parallel 

prioritization .and classification technique. We applied our approach to (Testcase MIS system with 

priority) industrial dataset.  

 
3.2.1 Established priority assignment by the stakeholders and developer 

Stakeholders indicate ones who will describe the look of organization and will document the 

requirements (Gupta & Gupta., 2018). Stakeholders’ emphasis customer satisfaction in term of urgency, 

needs, and business values (Keertipati et al., 2016; Gupta & Gupta., 2018; Gambo et al., 2021); Whereas 

developer denotes engineers who develop or maintain related systems (Ahmad et al., 2022).  

Developers are concerned with project features such as effort and cost (Keertipati et al., 2016; (Devadas 

& Cholli., 2022). Stakeholders and developer’s collaboration has become an essential tool assists in 

bridging the gap of understanding and allocating a weight for each prioritization criteria. Therefore, 

stakeholders and developer’s asked to pick a weight for various prioritization criteria such as MoSCoW, 

time, cost, complexity, and importance. Stakeholders and developer’s collaboration in RP lead to 

success software system, since it minimizes the difference of view between stakeholder and developers 

for better estimation of priority acceptable to both. Hence, a refined priority weight for each 

requirement can be obtained. The proposed prioritization criteria and their description are represented 

in Table 1. The total weight will select by stakeholders for all requirements criteria will be 100 percent. 

Table 2 shows an example of criteria weight for the proposed requirements prioritization approach. 

 

Table 1: Prioritization criteria and their description  

Criteria 

 

Description 

MoSCoW Measure the impact of requirements using MoSCoW Method 

Cost Measure the cost required in developing the application 

Time Measure the time required to develop application 

Complexity  Measure the requirements complexity  

Importance Measure the importance of requirements. 

 
 

      Table 2: Example of criteria weight for requirements prioritization 

Criteria Weight % 

MoSCoW 10% 

Cost 15% 

Time 20% 

Complexity  25% 

Importance 30% 

Total 100% 
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Developers implement matrix based on dependence graph to represent dependency among 

requirements. The stakeholders and developer’s initial priority are considered as ‘‘perfect” preferences. 

These preferences will use as guide for estimation in MoSCoW ranking. 

 

3.2.2 MoSCoW based Prioritization 

Within the stakeholder and developer’s initial ranking in mind, MoSCoW method will progress to 

identify and classify the requirements accordingly. Moscow characterises a guideline to confirm the 

basic importance of the requirements. The key stakeholders distribute the requirements into four 

categories (Must, Should, Could and Wouldn’t) and three level (High, Medium, and Low) by applying 

MoSCoW method. MoSCOW categories represented in Table 3. 

 

Table 3: Rating criteria for MoSCoW Method categories 

 
MoSCoW 

category  

Meaning  

Must-Have (M) Identify the requirements that are absolutely critical for the success of project. 

Should-Have (S)  List the requirements that are important but not as critical as the Must-Have 

items. 

Could-Have (C)  Include requirements that are desirable but not essential for the project's 

immediate success. 

Won't-Have (W) This category includes requirements that are explicitly excluded from the current 

project scope. 

  

 The rating method for MoSCoW method is depending on the criteria (e.g: 1 - the maximum important 

priority, 4 - the minimum important priority) indicated in Table 4. 

 

Table 4: Rating criteria for MoSCoW Method 

Criteria  Rate  

Must  1 

Should 2 

Could  3 

Won’t  4 

 

The stakeholders and developers will then use numerical assignment techniques to score the rating for 

further prioritization criteria as defined in (Chua et al., 2022), table 4 shows rating criteria. The rating 

method for these criteria is based on the criteria in table 5 with the scale of 1 to 10 (e.g: 1 - the fewer 

important priority, 10 - the greatly important priority). The rating method for importance criteria is 

based on the criteria (e.g:3 - the very important priority, 1 - the less important priority) (Chua et al., 

2022), in Table 6. 

 

Table 5.: Rating criteria for cost, time, and complexity 

Criteria  Rating   

Cost 1-10 

Time  1-10 

Complexity  1-10 
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Table 6: Rating criteria for importance 

Criteria  Rating 

High 3 

Medium  2 

Low  1 

 

The prioritization part will begin with computing the rate based on the initial set of prioritized 

requirements by the stakeholders and developers. The weight criteria and rating method recognized 

previously will be used in computing the rate for requirements prioritization. The formula for 

computing each criteria of the requirement are defined as equations defined in (Chua et al., 2022) (1), 

(2), (3), (4), and (5). 

𝑀𝑜𝑆𝐶𝑜𝑊 → 𝑠𝑐𝑜𝑟𝑒/ 4 ∗ 𝑚𝑜𝑠𝑐𝑜𝑤_𝑤𝑒𝑖𝑔ℎ𝑡                     (1) 

𝐶𝑜𝑠𝑡 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑐𝑜𝑠𝑡_𝑤𝑒𝑖𝑔ℎ𝑡                                 (2) 

𝑇𝑖𝑚𝑒 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑡𝑖𝑚𝑒_𝑤𝑒𝑖𝑔ℎ𝑡                                   (3) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 → 𝑠𝑐𝑜𝑟𝑒 / 10 ∗ 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑤𝑒𝑖𝑔ℎ𝑡         (4) 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 → 𝑠𝑐𝑜𝑟𝑒 / 3 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡           (5) 

The total rates for requirements criteria will be computed using equation (6) when the criteria of each 

requirement are calculated. 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 → 𝑀𝑜𝑆𝐶𝑜𝑊 + 𝐶𝑜𝑠𝑡 + 𝑇𝑖𝑚𝑒 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (6) 

 

3.2.3 MoSCoW Parallel Prioritization 

Parallel prioritization concepts implemented when the requirements in the same MoSCoW category 

and the same priority level with no dependencies.  Therefore, it could be implemented simultaneously 

to reduce the implementation time, which may contribute in accelerating the other higher level in 

software development. Then calculate implementation time: To confirm the hypothesis of simultaneous 

implementation of the requirements in parallel format could reduce the implementation time, the 

approach must calculate implementation time using mathematical equations. 

To calculate the implementation time, the time must be estimated for every requirement. The estimated 

time allocated for each requirement in each category (Must Have, Should Have, Could Have and 

Wouldn’t), based on required resources like complexity and cost. Then the (star_ time and finish_ time) 

must be estimated for each MoSCoW category as following: 

In Must category(M) the star_ time==0, finsh_time ==finsh_time_m   

In Should category(S) the star_ time== finsh_time_m, finsh_time== finsh_time_s 

In Could category(C) the star_ time== finsh_time_s, finsh_time== finsh_time_C. 

The Wouldn’t category could be dropped. Calculate the total time for each Category through making 

summation of the estimated times for all requirements in each category (Must Have, Should Have, 

Could Have). The requirements within the same MoSCoW category and with the same priority levels 

when no dependencies can be considered for simultaneous implementation to reduce the 

implementation time. 

3.2.4 A classification technique using Random Forest-based MoSCoW Method (RF-MM) 

Using Random Forest-based on MoSCoW Method and (RF-MM) to improve the performance of 

MoSCoW method in the RP level determination and classification. In addition, MoSCoW method 

allows flexibility by categorizing requirements into different priority levels, making it easier to manage 

scope and resources. Random Forest can capture complex relationships between requirements and 

https://doi.org/10.70274/jaict.2025.2.1
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prioritize them based on historical patterns. The integrated method was initiated by using 8 features 

given as input to MoSCoW Method and the output weight of MoSCoW optimized by Random Forest 

classifier. The classification process utilizes machine learning techniques in generating the priority 

levels and final priority ranks of requirements which contains two parts, prioritization and prediction. 

Specifically, Random Forest classifier -based MoSCoW Method (RF-MM) is used.  The purpose of this 

classification approach is to predict the priority levels. The second part of the proposed RF-MM 

approach automatic prioritization is prediction of requirements priority level. The final priority rank 

will be calculated as a result represented as output of Random Forest-based MoSCoW Method (RF- 

MM). It uses these MoSCoW ranking for estimate of its final output concluded series of iterations. 

Classification done using and 70% split (i.e. 70% training, 30% testing). The training data consists of 

70% of the original data (current requirements) and the other 30% of the data (new requirements) will 

be used as testing data. 

3.3 Implementation: (The proposed Automated Parallel Requirements Proposed Approach) (APRP) 

Our proposed approach contains two techniques the first one concerned with dividing the 

requirements into four categories according to MoSCoW method namely Must have, should have, 

could have and Wouldn’t have.  The second techniques use the output of the first techniques to 

determine the final priority of the requirements in the document in parallel format. 

Our proposed approach uses the output of the MoSCoW parallel prioritization as input to determine 

the final priority of the requirements in the document in parallel format. There are several tow steps 

Training, Testing and Prediction illustrated as following: 

Training: Train a Random Forest classifier using the Testcase MIS system with priority dataset, where 

the input features are the attributes of requirements, and the target variable is the priority level (High, 

Medium, and Low) according to MoSCoW method category and the implementation time estimation.  

We built these classifiers using the Scikit-Learn library, a well-established machine learning package 

for Python. Scikit-Learn offers numerous utility functions for data preprocessing, validation, and metric 

computations. The goal of our study is to achieve the best combination of the MoSCoW method and 

the Random Forest classifier as supervised learning techniques for prioritizing and classifying software 

requirements, with an added focus on estimating implementation time. The algorithm for our approach 

is shown in Figure 2. 

Testing and Prediction: Once our approach is trained and evaluated, I can use it to predict the priority 

levels of new requirements based on their attributes.  

Classification Approach Algorithm 

Input: the data list gained from our MoSCoW parallel prioritization 

Output: Pattern as values 

Input prioritization criteria values (Cost, Time, Complexity and Importance). 

Find pattern as values using Regular Expressions Array 

If Importance is 1 Then 

Req in Must MoSCoW_category == 'M' 

if priority == 'High': 

m_h.allocted(req) in array 

elif priority == 'Medium': 

m_m. allocted(req) in array 

elif priority == 'Low': 

m_l. allocted(req) in array 

Else IF Importance is 2 Then 
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Req in Should MoSCoW_category == 'S' 

if priority == 'High': 

  s_h. allocted(req) in array 

elif priority == 'Medium': 

   s_m. allocted(req) in array 

elif priority == 'Low': 

s_l.allocted(req) in array 

Else IF Importance is 3 Then 

Req in Could MoSCoW_category == 'C' 

if priority == 'High': 

c_h. allocted(req) in array 

elif priority == 'Medium': 

c_m. allocted(req) in array 

elif priority == 'Low': 

c_l. allocted(req) in array 

Else IF Importance is 4 Then 

if priority == 'High': 

w_h. allocted(req) in array  

elif priority == 'Medium': 

w_m. allocted(req) in array 

elif priority == 'Low': 

w_l. allocted(req) in array 

calculate the total implementation time for requirements within each MoSCoW category considering 

dependencies 

Drop Wouldn’t category   

for each MoSCoW category  (M, S, C): 

if No of Req in the same MoSCoW class with the same priority level & No dependency among them: 

Rank them in parallel format.  

END. 

 

Figure 2.  Classification approach algorithm 

 

 
3.4 Approach Evaluation  

To approve the hypothesis that ranking requirements in parallel format can reduce implementation 

time, the approach calculates this time using mathematical equations. We computed the total 

implementation time for the "Must," "Should," and "Could" categories according to the MoSCoW 

method and compared the results. Figures 3 and 4 illustrates these findings. 
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total Moscow: 218.75 

total cost: 2392.95 

total time: 115.15 

total complexity: 102.5 

total importance: 291.66 

Time:  33.0 

 

 

 

 

 

 

 

 

Figure 3.  parallel ranking implementation 
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total Moscow: 218.75 

total cost: 2392.95 

total time: 115.15 

total complexity: 102.5 

total importance: 291.66 

Time:  76.0 

Figure 4. Sequential ranking implementation 

 

To evaluate the performance of the classification and priority determination algorithm, you should 

know two essential terms in any measurements, Accuracy (Acc), and Precision (P). They have a 

distinct meaning, as we will discuss in the subsequence lines. For our algorithm, accuracy had been 

calculated in expressions of positives and negatives as follows: 

 

Accuracy= (TP+TN) / (TP+TN+FP+FN) 

 

Where, TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives table 

7 signify the confusion matrix 

 

https://doi.org/10.70274/jaict.2025.2.1


13 | Journal of Artificial Intelligence and Computational Technology, Volume 1 Issue 1, October 2024 

DOI: https://doi.org/10.70274/jaict.2025.2.1. 

p- ISSN 34562-3478 e- ISSN 5443-1243 

Calculating accuracy for the classification algorithm that classified requirement priority as correctly 

predicted requirements priority (the positive class) or falsely predicted requirements priority (the 

negative class): 

 

Table 7:  Confusion matrix 

True Positives(TP) False Positives(FP) 

Reality:  correctly determines the requirement 

priority level  

ML algorithm predicted:  right priority. 

Number of TP result:  36 

Reality: correctly determines the requirement 

priority level 

ML model predicted: the wrong priority. 

Number of FP result: 3 

False Negative (FN) True Negative(TN) 

Reality: imprecisely determine the requirement 

priority level 

ML algorithm predicted: incorrectly 

recognized wrong priority. 

Number of FN result: 3 

Reality: imprecisely determine the requirement 

priority level 

ML model predicted: correctly recognized 

wrong priority. 

Number of TN result: 75 

 

Accuracy= (TP+TN)/ (TP+TN+FP+FN) = (36+75)/ (36+75+3+3) =94.87%  

Accuracy comes out to 0.9487, or 94.87%. That indicates our algorithm is doing a great job of 

determining the requirements priority level. 

 

Precision(P): Is the ratio of the number of related instances retrieved to the total number of unrelated 

and related records retrieved (Sarhan et al., 2016). It seems to be the vital metric of our algorithm as it 

determines the requirements for specific release.  

 

P =
TP

(TP + FP)
× 100 

P =
36

(36+3)
× 10   

 =0.92307  

= 92.31 

 

Recall (R) (Sarhan et al., 2016) also known as Sensitivity: Is the ratio of the number of related instances 

retrieved to the total number of existing relevant instances, defined as:   

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
× 100   

𝑃 =
36

(36+3)
× 100   

=0.92307  

= 92.31 

Accuracy (A): Is the fraction of true results against the total number of cases evaluated, defined as: 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
× 100 

Where TP: the number of true positives, FN: the number of false negatives, TN: the number of true negatives, 

FP: the number of false positives. 
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𝐴𝐶𝐶 =
36 + 75

(36 + 75 + 3 + 3)
× 100 

= 94.87 

 

Accuracy comes out to 94.87%. That means our algorithm is doing a great job of determining the 

requirements priority level from SRP document. 

We achieved a maximum measure of 94.87%, 92.31%, and 92.31% of average accuracy, precision, and 

recall, respectively, as represented in figure 5. 

 

 

Figure 5. The performance metrics 

 

The ease of use requires an interface for interaction between the approach and users, Thus, the 

Graphical User Interface (GUI) of the APRP approach main page is designed as denoted in Figure 6. 

APRP approach is able to handle different datasets as long as cleaning the dataset.  An Example of 

requirements parallel prioritization result is presented in Figure 7. 
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Figure 6. Graphical User Interface (GUI) of APRP approach 

 

 

 

 
 

 

 

 

Figure 7. Example of requirements parallel prioritization result 
 

 

 

 

4. Results Discussion 
 

Experiments on automated requirements priority detection were conducted using the Testcase MIS 

system with a priority dataset. We trained the requirements prioritization approach on 1,314 

requirements within this dataset and observed a promising reduction in implementation time. 

Specifically, parallel ranking reduced implementation time to 33 seconds, compared to 76 seconds in a 
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sequential setup. This demonstrates that parallel ranking can cut implementation time by more than 

half, proving its effectiveness in optimizing requirements prioritization. When we evaluate the 

performance in classification and priority level determination, it achieved a maximum measure of 

94.87%, 92.31%, and 92.31% of average accuracy, precision and recall, respectively. 

 

A strength of our approach is that unlike many other prioritization methods, as it beats CDBR, SARiP, 

and IQ-BR in term of concern the impact of priority ranking on software development cycles, accuracy, 

ease of use, as well as its ability of handling projects with massive number of requirements. Further, 

our approach introduces the parallel ranking concept in RP, which lead to reducing implementation 

time to more than have along with high level of accuracy.  

 

Table 7: Study Comparisons  

Factor  CDBR(2018) SARiP (2022) IQ-BR(2022)  Proposed Approach  

APRP (2024) 

Automation  Semi-automated Semi-automated Full-automated Full-automated 

Prioritization 

criteria  

Stakeholders 

and developer’s 

Communication,  

Dependency. 

Scalability, and 

Importance  

Stakeholders 

prioritization, 

Cost, Time, 

Complexity, 

Risk, and    

Importance 

Customer 

prioritization, 

Dependency 

Accuracy, 

Prioritization time. 

Stakeholders and 

developer’s criteria,  

Dependency, Cost, Time, 

Complexity,  Importance, 

and Scalability  

No of input 

Requirements 

100 Not estimated 60 >149 

Scalability  Considered Not Considered Considered Considered 

Parallel RP  - - - Considered  

Awareness 

with the effect 

of RP on 

software 

developments 

cycle  

- - - Considered 

Implementation 

time  

- - - Considered 

Accuracy  90%  Not estimated 93.15 94.87 

 
 

5.Conclusion  

In this paper, we designed a machine learning approach integrated with MoSCoW method, capable of 

determining requirement priority levels in a parallel format, significantly reducing implementation 

time. When measuring this reduction, we found that sequential ranking required 76 seconds, while 

parallel ranking reduced this to 33 seconds. This demonstrates that parallel ranking can cut 

implementation time by more than half. The approach was applied to a Testcase MIS system with a 

priority dataset, providing valuable insights into the impact of priority ranking on software 

development cycles. By applying the classification, we achieved a maximum measure of 94.87%, 

92.31%, and 92.31% of average accuracy, precision and recall, respectively.  

Based on our outcomes, ML within RP promising to address present challenges and uncover new 

opportunities for improvement. Further, this research sets the stage for future enhancements in the field 

RP based computational intelligence. Future work will improve the approach performance by storing 

the requirements and prioritization results in a database in order to evaluate the approach effectiveness 

and refine it over time.  
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